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Preface 

One suspects that the people who use computers for their livelihood are 
growing more "sophisticated" as the field of computer science evolves. This 
view might be defended by the expanding use of languages such as C and Lisp in 
contrast to the languages such as FORTRAN and COBOL. This hypothesis is 
false however - computer languages are not like natural languages where 
successive generations stick with the language of their ancestors. Computer 
programmers do not grow more sophisticated - programmers simply take the 
time to muddle through the increasingly complex language semantics in an 
attempt to write useful programs. Of course, these programmers are 
"sophisticated" in the same sense as are hackers of MockLisp, PostScript, and 
Tex - highly specialized and tedious languages. It is quite frustrating how this 
myth of sophistication is propagated by some industries, universities, and 
government agencies. When I was an undergraduate at MIT, I distinctly 
remember the convoluted questions on exams concerning dynamic scoping in 
Lisp - the emphasis was placed solely on a "hacker's" view of computation, i.e., 
the control and manipulation of storage cells. No consideration was given to the 
logical structure of programs. Within the past five years, Ada and Common Lisp 
have become programming language standards, despite their complexity (note 
that dynamic scoping was dropped even from Common Lisp). Of course, most 
industries' selection of programming languages are primarily driven by the 
requirement for compatibility (with previous software) and performance. To 
achieve performance, C and similar languages are based on the functionality of 
the underlying host machine. As a result, they have no logical structure 
corresponding to the application. 

This socalled trend toward "sophistication" belies a deep-seated problem: 
computers are simply becoming more difficult to program (contrastingly, the 
"use" of computers, i.e., pressing buttons, is becoming easier, e.g., with the 
Macintosh). There is nothing wrong with expanding a language to make it more 
powerful, so long as the expansion is consistent with the basic structure of the 
language. A language can be extended in directions away from the fundamental 
basis, if it is ensured that the renegade extensions will very rarely be used, and so 
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do not confuse the programmer. For example, Lisp has purposefully evolved 
contrary to this view, as a "ball of mud." In general, implementation issues are a 
mystery to most programmers (and some implementors), forcing the use of the 
dirtiest parts of a language in an attempt to gain performance. Often these 
attempts have no effect or backfire, but they always destroy the logic of a 
program. In addition, the parallelization of such languages, in an effort to 
increase performance on multiprocessors, often entails the creation of additional 
constructs, such as a Future (in Multi-Lisp) or Parallel-Let (in QLisp), with 
complex semantics which are difficult to use effectively and safely. 

Computer programming can benefit from clean, logical program semantics 
because such semantics facilitate understanding, hence ease of debugging, 
program modification and high-performance implementation (further arguments 
can be given concerning program verification, etc.). Logic programming 
languages are a family of programming languages based on the first-order 
predicate logic, and manage to retain a semblance of declarative semantics. 
Although logic programming languages have not yet achieved the ideal plateau 
of complete declarativity, for the most part, the semantics, e.g., of NV-Prolog and 
CLP(9\), are so easy to understand that complex programs can be built with little 
effort. Recently Prolog has been successfully implemented on multiprocessors, 
with no need to change its logical semantics. Even within the logic programming 
community, however, the conflict between performance and clarity (logical 
interpretation) rages in the arena of parallel implementations. Languages such as 
GHC and CP sacrifice ease of programming to facilitate implementations on 
mUltiprocessors. 

This book is concerned with the design and performance of computer 
architectures, i.e., instruction sets and storage models, for logic programming 
languages. This book is concerned with the Prolog language because it is 
commonly used and is representative of a large number of other logic 
programming languages. Few comments are given as to the relative merits of 
Prolog as compared to other logic programming languages, or functional 
languages - that will require an entire other book. Logic programming 
languages, although far from perfect, are more useable and offer more cost
efficient multiprocessor implementations than other symbolic programming 
paradigms. In the future, Prolog will no doubt be extended in many areas, e.g., to 
include efficient and logical definitions of arrays and modules. Because of the 
strong logical foundation, ease of programming will be retained and parallel 
implementations will abound. 
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1 Introduction 

The main reason that current computer applications in symbolic processing 
fail to meet speed constraints on current machines is the gap between the 
applications and the languages and architectures in which they are implemented. 
Applications such as natural language understanding and symbolic equation 
solving, as compared with conventional applications such as numerical modeling 
and simulation, are further removed from conventional procedural/functional 
languages such as Pascal and Lisp and their corresponding numeric/scientific 
processor architectures. This is because these ambitious new applications must, 
in a sense, be written as meta-level interpreters. A meta-level interpreter is a 
program which performs additional levels of interpretation to implement features 
not present in the host language, e.g., nondeterminate execution for parsing or a 
reduction mechanism for theorem proving. 

Any approach to improving program performance involves implementing 
these applications with appropriate languages and designing efficient 
architectures that either directly correspond to these languages or support 
interpretation of these features. Features which previously required meta
interpretation are now included in the instruction set and are implemented 
directly in the architecture. 

This book presents a study of abstract machine architectures for Prolog, a 
well-known logic programming language. Logic programming is a 
programming paradigm constructed from the abstract model of first order logic. 
Prolog is representative of that class of languages with powerful enough 
functionality to facilitate the development of advanced applications. Prolog is 
used primarily for artificial intelligence and database applications, as well as 
general applications such as compiler writing. Prolog differs from procedural 
languages, such as Pascal and Lisp, in that it is applicative (variables can be 
bound at most once in an execution path), nondeterminate (alternate paths are 
executed in an attempt to create a consistent set of variable bindings), and uses 
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unification (a type of pattern matching) as the primary operation. Thus, means to 
efficient Prolog execution will likely differ from those of conventional 
languages. 

As the gap between language and architecture decreases, fewer instructions 
are executed within the program. These instructions do more work and may 
therefore be more difficult to implement. In most high-Ievel-Ianguage
architecture machines, the complexity of the instruction set forces a microcoded 
implementation. An alternative is to implement the abstract machine 
interpretively on a lower-level host machine. The selection of the most cost
effective implementation strategy depends on many considerations -
technology, instruction set compatibility, design effort, etc. Regardless of the 
relative weight of each consideration, any design approach requires an 
understanding of the dynamic Prolog program behavior, i.e., the characteristics 
of the abstract machine corresponding to Prolog. This book supplies this 
information. 

The problem of increasing Prolog execution speed is approached from the 
vantage point of memory design. High-speed processors are ultimately limited 
by memory bandwidth and architectures that require less bandwidth have greater 
potential for high performance. The memory-referencing characteristics of well
designed abstract machines are minimal in the sense that a host which directly 
implements the abstract machine instructions as atomic actions will make fewer 
memory references than other types of hosts. No matter what the host, however, 
the memory-referencing characteristics measured in this book are, for the most 
part, applicable. 

A family of canonical Prolog architectures with advantageous bandwidth 
requirements is defined in close correspondence to the semantics of Prolog. The 
Warren Abstract Machine (W AM) architecture [96], used for memory design 
throughout the book, is a member of this family. Measurements of the Prolog 
Canonical Interpretive Form (ClF) indicate upper memory-performance bounds 
afforded by "ideal" attributes (which go beyond the W AM). 

High-speed uniprocessor performance is necessary, even within a 
multiprocessor, because not all types of parallelism exist or can be exploited in 
all applications. Within a shared memory multiprocessor, local processor 
memories are necessary to reduce bandwidth and allow undegraded execution of 
sequential code. The main portion of the book concerns modeling and analysis 
of two-level memory hierarchies for sequential and parallel Prolog architectures. 
A trace-driven simulator is used to measure local memories. Sequential Prolog 
programs are compiled into the W AM instruction set and emulated, producing a 
memory-address-trace file. Restricted AND-Parallel (RAP) Prolog programs 
[34] are compiled into the PW AM instruction set [35] and similarly emulated, 
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assuming a shared memory multiprocessor with a small number of tightly
coupled high-performance processing elements. Main memories are evaluated 
with asymptotic queueing models. 

This book synthesizes logic programming architecture design with the 
lessons learned from procedural programming architecture design and memory 
organization. The field of logic programming machine design is new. It is 
therefore not surprising that little has been published in the area of logic 
programming machine performance. The vast store of knowledge and folklore 
available about procedural language architectures and machines is absent for 
logic programming languages. This book helps fill this gap. 

In this book, successive refinements of models of abstraction allow the 
measurement of the expected memory performance of both sequential and 
parallel logic programming languages on host processors. The initial level of 
abstraction is the Prolog source language, leading to canonical interpretive forms 
(CIFs) for Prolog. These canonical architectures are refined into realizable 
architectures (Direct Correspondence Architectures - DCAs), such as the W AM 
and PW AM. Simulations of these architectures executing on a two-level 
memory model produce memory bandwidth requirement statistics. Refinement 
of the simple two-level memory model into a queueing model allows the 
measurement of time dependent statistics, such as processor performance 
degradation. 

At the various levels of abstraction, important results are uncovered. At the 
architecture level, it is shown that traditional CIF models can be constrained, at 
little cost in performance, to CIFs more suitable for current technology hosts. 
The W AM can be viewed as a DCA defined from such a constrained CIF. At the 
memory simulation level, shallow backtracking is shown to be the primary 
source of the W AM bandwidth requirement. The analysis of the efficiency of 
several memory organizations at reducing the bandwidth requirement indicates 
that caches offer the best memory performance - a result similar to that found 
for procedural language processors [2]. Less costly memory organizations also 
perform quite well, a result of the W AM's high locality. At the queueing 
analysis level, PW AM is shown to exploit parallelism, on a tightly-coupled 
shared memory multiprocessor, with little overhead with respect to the W AM. It 
is shown, however, that even for a limited number (eight) of high-performance 
processing elements, bus capacity is the critical performance bottleneck. This is 
not to say that shared memory multiprocessors are an inferior design - on the 
contrary, it is shown that with emerging bus technology and an interleaved 
shared memory, this type of limited multiprocessor organization can achieve 
significant speed-ups exploiting Restricted-AND Parallelism alone. 

The primary contribution of this book is the successive refinement of 
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architectures and performance models for logic programming languages, 
resulting in an accurate description of their dynamic memory-referencing 
behaviors. A summary of the detailed contributions of the book follows. 

• A family of canonical architectures, called CIFs, closely 
corresponding to Prolog, are described. Measurements of the CIFs 
are presented, indicating the memory-performance bounds afforded 
by attributes such as tight instruction-encoding, split-stacks and ideal 
indexing. 

• The memory-referencing characteristics of realistic Prolog programs 
are determined. Evidence is presented indicating that shallow 
backtracking is the primary memory-performance bottleneck of 
environment stacking Prolog architectures. 

• Local memories which reduce performance bottlenecks, for various 
costs, are designed and analyzed. These memories include choice 
point buffers, stack buffers, copyback data caches, "smart" copyback 
data caches, instruction buffers, and instruction caches. 

• Local memories which solve shared memory multiprocessor 
consistency problems, specifically for the Restricted AND-Parallel 
Prolog architecture PW AM, are designed and analyzed. These 
memories include broadcast, hybrid, and write-through coherent 
caches. The hybrid cache is a new combination of write-through and 
write-broadcast cache designs, that takes advantage of RAP-Prolog 
attributes to guarantee consistency with low overheads and 
inexpensive hardware. 

• Interleaved main memories, for both sequential and parallel 
architectures, are analyzed with queueing model formulations of the 
local memories. 

In the remainder of this chapter, Prolog is fIrst introduced with examples. 
Arguments are then given for studying high-level Prolog architectures, as 
opposed to other alternatives. Lastly, previous work in the fields of architecture 
design, benchmarking, and memory organization of logic programming 
languages and machines is reviewed. 

1.1. What is Prolog? 

Prolog is the first practical logic programming language, designed by 
Colmerauer in 1973 [70], with its theoretical groundwork laid by Kowalski in 
1974 [44]. Prolog is the primary representative of logic programming languages 
- most other logic programming languages are derivatives of the Prolog 
computation model. To the first order, results of Prolog execution measurements 
can be extended to Prolog-like languages and logic programming languages in 
general. 
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isotree(void,void). 
isotree(tree(X,Left1,Right1), 

tree(X,Left2,Right2» '
isotree(Leftl,Left2), 
isotree(Right1,Right2) . 

isotree(tree(X,Left1,Right1), 
tree(X,Left2,Right2» :
isotree(Left1,Right2), 
isotree(Rightl,Left2) . 

Figure 1-1: Prolog Program Example: isotree/2 
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Prolog programs and data are composed of terms. A term is either a simple 
term or a compound term (also called a complex term or structure). A simple 
term is either a constant or a variable. A structure consists of a functor and 
arguments. The functor is composed of a name and arity (this is usually written 
as namelarity). The name is the symbolic identifier of the structure, the arity is 
the number of arguments, and the arguments themselves are terms. An example 
of a structure is tree (1, void, Subtree), with functor tree/3. A 
constant is a structure with zero arity. This may be a number or an atomic 
identifier. Examples of constants are 1 and void. A (logical) variable is an 
object which can be bound (only once) to another term. Prolog uses a capitalized 
identifier to represent a variable, e.g., Subtree. 

A Prolog program consists of collections of clauses known as procedures. 
A clause is a term consisting of a head and a body. The head contains the formal 
parameters of the procedure definition. The body consists of a (possibly empty) 
set of goals. A goal is a procedure invocation with its corresponding passed 
parameters. A procedure is uniquely specified by the name and arity of the head 
of each of its clauses. The arity of a procedure represents the (fixed) number of 
arguments it must be passed when invoked. 

Figure 1-1 illustrates a program (from [78]) which determines if two trees 
are isomorphic. The program consists of a single recursive procedure, 
isotree/2, which has three clauses. The first clause has an empty body and is 
called a unit clause or fact. The second two clauses are called conjunctive 
clauses, non-unit clauses, or rules because they define relations between facts 
and/or other rules. A third necessary program construct is a query, e.g., 

?- isotree(tree(l,tree(2,void,void), 
tree(3,void,void»,X) . 

In its simplest form, a query is a procedure invocation with external input, i.e., a 
request to execute a program with given data. 
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Prolog semantics can be viewed declaratively or procedurally. The 
declarative view treats a procedure as a logical disjunction of its clauses and a 
clause as a logical conjunction of its goals. This view benefits programmers. 
Variables in queries are existentially quantified. For instance, the query given 
above is read: "Does there exist a tree X such that the tree represented pictorially 
below is isomorphic to it?" 

1 
/ \ 

/ \ 
2 3 

Variables appearing in the head of a rule are universally quantified. Variables 
appearing only in the body of a rule are existentially quantified. For instance, the 
second clause of isotree/2 has an informal declarative reading: "Any two 
trees are isomorphic if they both have the same value and the left subtree of one 
is isomorphic to the left subtree of the other and the right subtree of one is 
isomorphic to the right subtree of the other." 

The procedural view treats a procedure as an ordered sequence of entry 
points (clauses) which must be executed until one succeeds. A clause is treated 
as an ordered sequence of procedure calls (goals), all of which must be executed 
for success. Upon failure of any goal, the computation is backed up to the entry 
of the most recently invoked procedure with unattempted clauses. That 
procedure is re-entered at its next clause and the computation continues. The 
main implementation distinction between Prolog and procedural languages is that 
Prolog programs backtrack in this manner. 

The procedural semantics are derived from the observation that to solve an 
existential query Q with a universal fact P, one finds a common instance C, i.e., 
two substitutions, 't1 and't2' such that C = P't1 = Q't2' There are two deduction 
rules in effect here: generalization - an existential query is a logical 
consequence of an instance of that query, and instantiation - an instance of a 
universally quantified fact is a logical consequence of that fact. The combination 
of these rules is called resolution. 

Generalizing, the query Q is a logical consequence of program P with the 
universal rule A :- B 1.B2, .. .Bn, if A and Q have a common instance and B l' B2, ... 

Bn are also logical consequences of P. This is called Horn clause resolution, 
developed by Robinson [66]. In other words, a goal is executed by attempting 
resolution with the heads of the clauses of the procedure of the same name and 
arity as the goal. Successful resolution involves successfully unifying each goal 
argument to each corresponding head argument. Unification finds a most 
general common instance of its input terms to avoid specializing the proof more 
than necessary. 
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If the goal cannot match (unify with) any clause of its associated procedure, 
the goal fails. When the goal matches a clause and it can be determined that no 
other clauses can match, it is called determinate execution. When the goal 
matches a clause and other (untried) clauses can possibly also match, it is called 
nondeterminate execution. 

The scope of a variable is a clause; therefore the occurrences of X in the 
second and third clauses of -isotree/2 in Figure 1-1 are unrelated. The goal 
isotree (tree (X, void) ,void) can successfully resolve with the heads of 
either the second or third clauses. Note again that the scopes of the X in the goal 
isotree (tree (X, void) ,void) and the X in the clause heads are 
independent, and therefore these two variables are unique and can be bound to 
distinct objects. The goal isotree (void, void) can match only the first 
clause and the goal isotree (X, Y) can match any clause. 

For convenience and efficiency, Prolog has been given additional support 
for: 

• lists - a list, which is a structure with functor . /2, is given a 
special syntax in Prolog. The list ' .' (X, Y) can be written as 
[XIY]. A list of two objects, '.' (1,'.' (2, []» can be 
written as [1, 2]. Note that [] is a special constant representing 
nil (end-of-list). In most tagged Prolog architectures, including the 
ones considered in this book, the list data type is given a unique tag. 

• built-ins - many procedures are predefined in Prolog. The most 
frequently used of these include arithmetic, construction and 
destruction of terms, conditional tests for types of terms, and strict 
equality (wherein no unification is allowed to take place). 

• cut - this is an extra-logical control feature, represented by .. ! ", 
used to prevent undesired backtracking over the clauses in a 
procedure. As a goal in a clause of a procedure, cut always 
succeeds, causing a side effect of disallowing subsequent clauses of 
that procedure to be tried in the event of backtracking. 

As another example, Figure 1-2 shows the most commonly executed Prolog 
procedure in the QC 1 benchmark measured later in this book. The 
flattenCode/3 procedure flattens a binary tree structure into a list removing 
empty sequences represented by the atom void, e.g., the query 

?- flattenCode«l, (2,3,void, (4,5») ,X, []) . 

instantiates X to the list [1,2,3,4,5]. Read procedurally, flattenCode/3 
recursively processes the left and right branches of a subtree, using a difference 
list (see [78, p. 239]) to collect the resulting leaves. The second and third 
arguments of the procedure represent the difference list as an answer list and the 
tail of the answer list, facilitating efficient concatenation of the resulting sublists 
from the left and right branches. This method of concatenation is illustrated in 
the second clause, where the answer is composed by instantiating the tail of the 
first sequence's flattened list, Codel, to the second sequence's flattened list. 
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flattenCode (void, Code, Code) :- !. 
flattenCode«Seql,Seq2),CodeO,Code). !, 

flattenCode(Seql,CodeO,Codel), 
flattenCode(Seq2,Codel,Code). 

flattenCode(Instr, [InstrICode],Code). 

Figure 1·2: Prolog Program Example: flattenCode/3 

Read declaratively, flattenCode/3 specifies three rules concerning 
flattening. The result of flattening an empty sequence is an empty difference list. 
The result of flattening a binary tree, (Seql, Seq2) , is CodeO (with tail 
Code), if flattening the left subtree, Seql, results in CodeO (with tail Codel) 
and flattening the right subtree, Seq2, results in Codel (with tail Code). The 
result of flattening anything else, Instr, is a list with head Instr and tail 
Code. 

1.2. Why Prolog? 

This book discusses how to make Prolog programs execute quickly. In this 
section the selection of Prolog as a target language, and a high-level Prolog 
architecture as a target instruction set, are justified. Three arguments are given: 
for designing complex instruction architectures over reduced instruction 
architectures, for analyzing Prolog instead of a committed-choice 
nondeterminism logic programming language, and for choosing Prolog over 
Lisp, a popular functional language. 

1.2.1. Reduced Instruction Set Architectures 

An alternative approach to increasing the execution speed of logic programs 
is to translate the high-level architecture into a lower-level target or host 
instruction set. For instance this host can be a reduced instruction set computer 
(RISC) [63, 61, 81]. The goal of reduced instruction set machines is to simplify 
the instruction set, allowing more effective compiler optimizations and 
streamlined hardware. For the most part, results of this book are applicable for 
any host. Exceptions are results concerning instruction referencing 
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characteristics. In the case of instructions, a microcode implementation of a 
high-level architecture cannot be easily compared to a reduced instruction set 
architecture. 

Reduced instruction set architectures were originally designed for current 
hardware technology, procedural languages and general purpose applications. It 
is argued here that such architectures are not necessarily as well-suited to 
advanced hardware technology and symbolic processing applications, as are 
high-level instruction set architectures. First instruction referencing, then data 
referencing characteristics are considered. 

Given advanced (denser) hardware, the benefit of a reduced instruction set 
and a corresponding necessarily large instruction cache is not clearly superior to 
a complex instruction set and a corresponding necessarily large micro-store. 
Prolog code, when compiled into a reduced instruction set, expands to a size 
incompatible with current on-chip (reduced instruction set machine) instruction 
caches. Borriello et al. [8] report that to achieve similar miss ratios, SPUR, a 
reduced instruction set microprocessor [81], requires significantly larger caches 
than would the PLM, a microcoded complex instruction set machine [21]. 

General purpose applications and procedural languages have certain 
attributes, such as high locality, not shared by symbolic processing applications 
and applicative languages. For example, in this book (Section 4.2.6), it is found 
that for a 1024 word copyback data cache (with a four word line size), typical 
Prolog programs display four times the traffic ratios of typical Pascal programs. 
Most reduced instruction set machines rely on high locality to allow their 
pipelines to operate efficiently. The specialization of the architecture, to 
incorporate attributes such as tags (e.g., SPUR) and shadow registers (e.g., 
Pegasus [71]), is necessary to reduce the data bandwidth requirement. 

The critical resource is the available on/off chip bandwidth. The gap 
between Prolog and conventional RISC architectures is so great as to make the 
available chip bandwidth intolerable. Complex instruction set architectures, 
specialized for Prolog, reduce the gap to a reasonable level, thereby reducing the 
bandwidth requirement. 

These arguments aside, assume that a reduced instruction set host can be 
made to execute Prolog programs faster than a microcoded implementation of a 
high-level architecture. Raw speed of compiled. optimized programs does not in 
itself solve the software crisis. The software crisis refers to the growing 
complexity and cost of developing applications. High-level architectures allow 
the use of relatively simple (and therefore fast) compilers. In addition, 
decompilation for symbolic debugging is facilitated by high-level architectures. 
The application development cycle involves multiple recompilations. as well as 
debugging of code. Both of these activities are supported by a single high-level 
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architecture host. Although two different machines can be used for the purposes 
of application development and delivery, this is not a reasonable solution except 
for the largest commercial applications. 

1.2.2. Parallel Logic Programming Languages 

Parallel logic programming languages are of considerable interest for 
attaining high performance on future multiprocessors. Gupta et al. [33] and 
others have shown, however, that unlimited parallelism does not exist in many 
application programs. Therefore, as with conventional multiprocessors, one 
performance bottleneck will be the speed of sequential execution of a single 
processing element. 

Many parallel logic programming languages are based on committed-choice 
nondeterminism, wherein once a clause head (and an extension to the head, 
called the guard, consisting of simple goals) succeeds, the procedure commits to 
that clause and will not backtrack. This weakening of the logic programming 
paradigm once again increases the gap between the application and language. In 
addition, the storage models required by committed-choice languages cannot be 
implemented as efficiently on sequential processors as sequential languages, such 
as Prolog. Committed-choice-Ianguage architectures are based on the hypothesis 
that the amount of parallelism uncovered by the language will outweigh any 
inefficiencies incuITed in single processor execution. 

There is no doubt that mUltiprocessor execution is of the utmost importance 
in increasing logic programming performance. The view taken in this book is in 
agreement with Butler et al. [11], Hermenegildo [35], and others, who propose 
parallel architectures for Prolog built around an efficient sequential architecture, 
i.e., storage model. These architectures are based on the hypothesis that the 
efficiency of single processor execution outweighs the restricted amount of 
parallelism uncovered by the language. Local and shared memory design and 
modeling for one such parallel architecture are presented in this book. 

1.2.3. Lisp 

Lisp, a symbolic language based on function application [51,77], is both 
more popular and more mature than Prolog. Studies of Lisp architecture 
performance have been conducted [29] and Lisp machines built (e.g., Symbolics 
3600 [80], SPUR [81]). There are two primary deficiencies with Lisp as 
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program 
Boyer 
Deriv 
Puzzle 
Tak: 

t native code 

Sun 
Common Lispt 

15.08 sec 
4.24 sec 
8.44 sec 
0.47 sec 

:\: emulated byte-code 

Quintus 
Prolog:\: 
25.50 sec 
6.30 sec 
2.43 sec 
4.59 sec 

Lisp: Prolog 
0.59 
0.67 
3.47 
0.10 

Table 1·1: Lisp vs. Prolog: Sun-3/160 Comparison 
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compared with Prolog - both stemming from the evolution of Lisp (e.g., to 
Common Lisp). Lisp programs, as written by most programmers (see, for 
instance, the benchmarks presented in Gabriel [29]), have no declarative reading, 
and are not applicative. The first deficiency reduces the reliability, readability 
and extensibility of Lisp programs. The second deficiency reduces the ability to 
parallelize a Lisp program, either automatically or by the programmer. Although 
these arguments are common in the literature, here a third argument is 
introduced. 

It is argued below, with evidence presented in Tick [83], that as a result of 
increased functionality (over Lisp), Prolog holds more promise than Lisp for 
future high-speed processors. Studies of Prolog performance as compared with 
Lisp [59, 92] have been favorable to Prolog. In Tick [83] evidence is given that 
Prolog has greater semantic content than Lisp. Two results are given based on 
the assumption that memory bandwidth is the ultimate performance measure. 

The first result is that Lisp is better mapped onto current machines than 
Prolog. This is tenuously supported by comparisons between commercially 
available Lisp and Prolog systems, executing a subset of the Gabriel benchmarks 
as shown in Table 1-1. Although "apples vs. oranges," comparing these 
implementations serve to indicate that Lisp runs faster than Prolog on hardware 
with a limited number of state registers. Whether Prolog can reach Lisp 
performance on conventional machines is primarily dependent on how much of 
the Prolog state can be contained in available state registers, and if Prolog 
compilers of the same level of sophistication as those used for Lisp can be built. 

The second result is that Prolog has a greater potential to exploit the 
additional state and state transfers advanced hardware can offer. The high 
semantic content or potency of a language is indicated, for a given program, by a 
high mean number of memory references per instruction executed and a low total 
number of instructions executed. From the statistics shown in Table 1-2, Prolog 
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Tak Boyer 
Lisg Prolog LIP Lisg Prolog LIP 

instructions 683792 811008 9093949 4011264 
data ref 667891 508865 1.31 8200807 5752632 1.43 
instr ref 747401 938226 0.80 12078345 4555707 2.65 
data ref/instr 0.97 0.63 0.90 1.43 
instr ref/instr 1.09 1.16 1.33 1.14 

Deriv Puzzle 
Lisg Prolog LIP Lisg Prolog LIP 

instructions 598 277 12172280 525650 
data ref 515 537 0.96 3711662 842468 4.41 
instr ref 708 366 1.93 15759345 617679 25.5 
data ref/instr 0.87 1.94 0.30 1.60 
instr ref/instr 1.19 1.32 1.29 1.18 

Table 1-2: Lisp vs. Prolog: Abstract Machine Comparison 

displays greater potency than Lisp because the functionality of backtracking and 
unification are integrated into Prolog and its architecture. 

In summary, to reduce the execution time of a given application, one wishes 
to both 

• reduce the gap between the architecture and the language . 

• increase the semantic content of the language, increasing its 
performance potential. 

As shown, available hardware and compiler technology constrains these criteria, 
currently favoring Lisp. Future technology may well favor Prolog. 

1.3. Previous Work 

1.3.1. Architectures 

Flynn and Hoevel [27, 26] derived the theory of ideal language machines for 
FORTRAN. Wakefield [91] implemented this theory by designing and 
measuring ADEPT, a direct correspondence architecture (DCA) for Pascal. This 
book extends these concepts from procedural languages to applicative, logic 
programming languages, specifically Prolog. The step to Prolog is much larger 
than from FORTRAN to Pascal, because of attributes such as single-assignment, 
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nondeterminism, pointers, and unification. The singular contribution of the ideal 
Prolog architecture is the inclusion of a two-level name space (registers and 
memory), displaying superior memory-referencing characteristics under 
assumptions of a less costly host. 

Sequential Prolog architectures designed by D.H.D. Warren [93, 96], Byrd 
[9], and Bowen [10] are called environment-stacking architectures. These 

models utilize a stack holding local procedure variables in frames called 
environments. These architectures have been designed in the traditional manner, 
as evolutionary improvements from interpreter to compiler to abstract machine 
model. A contribution of this book is to show how the theory of ideal language 
machines is another equally valid design methodology, resulting in the same 
high-performance Prolog architectures. 

PW AM, designed by Hermenegildo [35], is an AND-parallel Prolog 
extension of the W AM. The PW AM model extends the initial work in Restricted 
AND-Parallelism by DeGroot [18], by developing an efficient architecture with a 
viable backtracking semantics. A contribution of this book is the measurement 
of the memory-referencing characteristics of PW AM executing on a shared 
memory multiprocessor. It is shown that PW AM's memory efficiency compares 
well with the W AM for sequential code and that PW AM has low communication 
overheads for parallel code. 

1.3.2. Benchmarking 

Many studies of both the static and dynamic characteristics of Prolog 
programs have been undertaken. Warren [93] measured the execution time of 
small Prolog programs to compare the performance of DEC-tO Prolog with the 
performance of various other programming languages. This was one of the first 
sets of Prolog benchmarks published with performance measurements. Wilk 
[98] measured the execution time of small, synthetic Prolog programs to 

compare different systems. He discusses the important attributes of a Prolog 
system, ranging from garbage collection to debugging capabilities. 

Ross [68, 69] measured the memory-referencing behavior of small sequential 
Prolog programs. In contrast to this book, he studied the Prolog working set, i.e., 
page referencing characteristics, between main memory and backing store. 
Prolog was found to have a larger working set than typical C programs. A 
Prolog paging strategy was designed which avoids transferring pages not 
belonging to the current valid storage areas (as defined by stack pointers, etc.). 
For compiled programs, this reduced page traffic by a factor of two over a 
conventional paging strategy. 
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Matsumoto [50], Ratcliffe [64], and Onai [60] performed static analysis of 
large Prolog programs (including versions of the CHAT and PLM benchmarks 
used in this book). They measured several attributes such as the number of cuts 
per clause, and the number and type of built-in goals per clause. These high
level statistics were aimed at evaluating compiler techniques, but not at directly 
analyzing the performance of the programs. Since static code was measured, 
these statistics don't necessarily reflect runtime behavior. Nor were these high
level analyses based on architecture models, as is done in this book. 

Ratcliffe measured parallelism metrics from static benchmarks to determine 
the amount of potential concurrency. Onai also measured parallelism metrics 
from two dynamic benchmarks. These high-level analyses were also not based 
on architecture models. Dobry [21], however, measured the execution time and 
simple memory-referencing characteristics of small Prolog programs, to illustrate 
the effectiveness of the PLM architecture. This work was extended by Touati 
[86] to include several larger benchmarks, including versions of the CHAT and 

ILl benchmarks used in this book. Touati's study presents measurements of 
detailed high-level characteristics of the PLM, such as cdr-coding efficiency, 
with the aim of evaluating compiler optimization strategies. Many of the results 
presented confirm those in this book. Note that although the PLM was built, the 
studies cited above used simulation for their measurements. 

Hermenegildo [35] measured the performance characteristics of small, 
synthetic benchmarks to illustrate the effectiveness of the PW AM architecture. 
His analysis assumed an idealized shared memory organization and emphasized 
high-level-architecture characterization. This book extends this work by 
analyzing PW AM memory-referencing characteristics assuming a realistic shared 
memory multiprocessor organization. 

1.3.3. Memory Organization 

A few comparative sequential Prolog hardware studies have been conducted 
[8,54,31] and several Prolog machines built [41, 57, 58, 56, 21,71]. The Kobe 

University PEK machine [41] compiles Prolog into horizontal microcode that is 
executed from a writable control store (WCS). The PEK architecture is similar 
to that of DEC-lO Prolog [93]. In addition to a 16K (by 96 bit) WCS, the PEK 
also incorporates a 4K (by 34 bit) stack buffer, 16K (by 34 bit) heap buffer, and 
16K (by 14 bit) trail buffer. 

The ICOT High-speed Prolog Machine (HPM or Chi) instruction set is a 
derivative of the W AM [57]. The HPM incorporates an 8K (by 36 bit), 4-way set 
associative write-through VD cache. Two ICOT Personal Sequential Inference 
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(PSI) machines have been designed. The PSI-I [58] is a microcoded interpreter 
for KLO, a simple compiled form of Prolog. PSI-I is equipped with an 8K (by 40 
bit), 2-way set associative copyback liD (combined instruction, data) cache. The 
PSI-II [56] instruction set is a derivative of the W AM. It incorporates a 4K (by 
40 bit), directly mapped copyback liD cache. The PSI-II incorporates a "write 
stack" operation which avoids fetching the next (invalid) word at the top of stack. 
This is a limited example of the more general "smart cache" described and 
analyzed in this book. 

The UC Berkeley Programmed Logic Machine (PLM) is a pipelined, 
microcoded Prolog machine [21,20]. The machine instruction set is a derivative 
of the W AM. The PLM incorporates a fixed-size single choice point buffer, a 
look-ahead instruction buffer, and a write buffer (to queue outstanding write 
requests). The Xl [22], a version of the PLM built by Xenologic Inc., includes 
two directly mapped 64K (32 bit) word caches (separating instructions and data) 
without the choice point buffer. The local memories simulated in this book are 
smaller (up to 1024 32-bit words) than those in the machines previously 
described. The intention is to model local memories that can be integrated with 
the CPU. 

The Mitsubishi Pegasus is a pipelined, RISC microprocessor for Prolog [71]. 
The tagged, load/store architecture incorporates a shadow register set, similar to 
that suggested in this book. Measurements made of small benchmarks running 
on Pegasus indicated that the shadow registers can improve program 
performance by up to 17% [71]. 

The Hitachi IPP [1] is a pipelined, microcoded Prolog machine. The 
instruction set is a derivative of the W AM. The IPP incorporates a four word 
instruction prefetch buffer, write-through cache, and write buffer. Processor 
performance has been simulated for small programs, indicating that advanced 
indexing techniques and global register allocation can give speedups of up to 3.4 
times that of unoptimized code. Optimizations similar to these are discussed in 
Chapter 2. 

Borriello et al. [8] described and measured the execution of Prolog on 
SPUR, a microprocessor with a tagged RISC architecture. 14 small Prolog 
benchmarks were executed on the SPUR and PLM simulators, allowing 
comparison of execution cycles. The results indicated that number of SPUR 
cycles executed was 2.3 times that of the PLM. The number of SPUR 
instructions executed was 16 times greater than the PLM. Borriello concludes 
that assuming similar memory configurations for PLM and SPUR, the SPUR can 
achieve 66% of PLM performance, if minor tag modifications and compiler 
improvements are made to SPUR. 

Mulder and Tick [54] described and measured the execution of Prolog on an 
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MC68020 microprocessor. Approximation methods were used to compare PLM 
and MC68020 execution cycles for three large benchmarks (the instruction 
frequencies presented in Appendix B of this book were used to estimate the 
number of execution cycles). The results indicated that assuming equivalent 
main memory speeds, the number of MC68020 cycles executed was 2.5 to 3.5 
times that of the PLM. 

Gee, et al. [31] microcoded a V AX 8600 general-purpose computer to 
directly emulate W AM instructions. They found that 85% of the PLM execution 
performance could be obtained for simple benchmarks. Because a general
purpose host was used, high-performance numeric computation was also 
achieved. 

Studies in memory organizations for high-level procedural language 
architectures include the works of Alpert [2] and Mitchell [53]. Alpert described 
and measured the data memory performance of contour buffers and copyback 
data caches for Pascal architectures. The contour buffer is similar in function to 
the stack buffer presented in this book. Alpert's cache simulator is used here to 
make uniprocessor copy back cache measurements, and has been extended to 
model write-through caches. Mitchell described and measured instruction cache 
performance for a wide range of architectures. Pascal benchmarks were 
simulated, providing performance metrics with which to compare architectures. 

Cache studies for traditional architectures are numerous. Most heavily 
referenced in this book are works by Smith [75], Bitar [6], Archibald [3], and 
Hill [38]. Smith and Hill present detailed studies of uniprocessor cache design 
and performance. Bitar and Archibald present detailed studies of multiprocessor 
(coherent) cache design and performance. This book extends these studies by 
analyzing cache performance for logic programming language architectures. 

1.4. Book Outline 

This book assumes familiarity with Prolog (refer to [78] for instance). 
Detailed knowledge of the W AM and PW AM instruction sets are not necessary. 
These architectures are reviewed in the Chapter 2, although the interested reader 
is referred to Warren [96] and Hermenegildo [35], respectively, for complete 
details. 

The body of this book contains four parts. The first part, Chapter 2, 
describes a family of Prolog architectures defined from the principles of 
canonical high-level language architectures. Prolog Canonical Interpretive 
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Forms (CIFs) are introduced which have attributes with certain "ideal" qualities 
not present in the W AM. The W AM is introduced from a historical perspective 
of DEC-lO Prolog and its variants. PW AM, chosen for later multiprocessor 
performance measurements, is also reviewed. 

Chapter 3 presents the tools and benchmarks used to make empirical 
measurements of memory models introduced in Chapter 4. The W AM, Prolog 
CIFs, and PW AM memory-referencing characteristics are presented and 
compared. 

Chapter 4 presents two-level memory hierarchies well-suited for sequential 
Prolog architectures. Local memory models are described and measurements are 
presented. The local memory designs are generalized into parameterized 
queueing models for main memory design. These models are evaluated, giving 
the bandwidth efficiency of both the main memory and the memory bus, and the 
expected processor performance degradation due to the local memory miss 
penalties, aggravated by main memory contention. 

Chapter 5 presents memory hierarchies well-suited for parallel Prolog 
architectures, specifically PW AM. Shared memory multiprocessor consistency 
problems for PW AM are outlined and local memory models are presented which 
solve these problems. The queueing models previously introduced are extended 
to describe shared memory multiprocessors. 

Finally, Chapter 6 presents conclusions drawn from the research and points 
to directions for future research. 
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2 Prolog Architectures 

This chapter describes a family of high-level instruction set architectures for 
the Prolog language. The Prolog architecture family is canonical, i.e., it is 
defined from the semantics of Prolog in the tradition of Flynn and Hoevel's work 
on canonical architectures for procedural languages [27]. The most notable 
member of the Prolog architecture family is the Warren Abstract Machine 
(W AM) architecture [96], currently implemented on general purpose hosts via 
native-code (e.g., Tricia [14]), interpretation (e.g., Quintus Prolog [62]), 
microcoded interpretation (e.g., on the V AX 8600 [31]), and on dedicated hosts 
(e.g., the UC Berkeley Programmed Logic Machine (PLM) [21] and the ICOT 
PSI-II [56]). 

The canonical Prolog architecture family includes attributes such as ideal 
indexing (a model for directly selecting the correct procedure entry point in a 
nondeterministic procedure invocation) and tight instruction encoding. Although 
not all of these attributes are realizable, they indicate upper bounds on sequential 
execution performance. In addition, they can be used constructively to aid in the 
design of realizable architectures on current hosts. It is shown that the W AM is 
such an architecture, i.e., the W AM instruction set closely corresponds to the 
Prolog source language. Results are presented indicating the extent to which the 
W AM achieves the canonical measures. 

An alternative introduction to the W AM architecture is also presented by 
means of its historical ancestor, the DEC-I 0 Prolog abstract machine (Prolog-l 0) 
[93]. These two architectures are compared in the area of memory performance. 

Evidence is presented suggesting that the W AM achieves its goal of optimizing 
the execution of determinate code (with respect to Prolog- 10), at the cost of 
slower nondeterminate execution. The performance difference (in terms of 
memory references made) is greatest for shallow backtracking programs. 

Finally, an overview of the Restricted AND-Parallel Prolog architecture 
(PW AM) [35] is given. In the next chapter, memory-referencing characteristics 
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of these architectures are presented and the relative merits of their attributes are 
compared. 

2.1. Canonical Prolog Architectures 

In this section, terminology is introduced with which canonical Prolog 
architectures are defined. These architectures are informally called Prolog 
canonical interpretive forms (CIFs). The importance of studying these 
architectures is then given. Metrics for measuring the characteristics of CIFs are 
introduced. Detailed definitions of the CIF architectures and metrics are given in 
subsequent parts of this section. 

A (sequential) machine, used to execute a program (i.e., a set of 
instructions), is defined as the combination of an interpretive mechanism and a 
store. The machine is called the image machine or abstract machine model. The 
store or image store is often called the storage model. The interpretive 
mechanism is often called the execution model and can be implemented with 
another machine, called the host machine. Architecture, as defined in this book, 
is the image machine instruction set semantics, i.e., how the interpretive 
mechanism updates the image store during program execution. 

The name space of the architecture is the set of (data and instruction) objects 
that can be referenced by the instruction set. Prolog data objects are described in 
Section 1.1. Each data object is given a name or identifier in the source program. 
Recall that in a Prolog program, variable names are capitalized, and thus easily 
distinguishable from constants. The (lexical) scope of an identifier is the largest 
program segment over which the identifier has a consistent definition. The scope 
of a constant identifier is the entire program. The scope of a variable identifier is 
only a single clause. In a one-level name space, as defined in this book, 
instructions can only reference identifiers whose scope is visible from the 
currently executing clause. In a two-level name space, instructions can also 
reference identifiers from a register set. 

A Prolog canonical interpretive form (CIF) is the measure of Prolog program 
events which limit a machine architecture. Alternatively, a Prolog CIF is a high
level architecture directly corresponding to Prolog. Flynn and Hoevel 
[26] developed the theory of canonical architectures and applied it to procedural 

languages such as FORTRAN and Pascal (CIFs developed for these languages 
are referred to as procedural CIFs in this book). The CIF models assume Von 
Neumann hosts where the memory bandwidth between the processor and 
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memory is the primary performance bottleneck. Other types of hosts, e.g., 
dataflow machines, are not considered. 

A two-phase evaluation model is assumed here, as in Flynn and Hoevel [27]. 
In the first phase, the Prolog source program is translated into an intermediate 
form, the Prolog CIF, with a compiler. In the second phase, the Prolog CIF is 
interpreted by the host. The purpose of defining a Prolog CIF is three-fold. 

• The CIF execution performance gives the best case program 
performance because memory referencing is minimal and stability 
(lack of disruption of sequential interpretation, e.g., taken branches) 
is maximal. The CIF is ideal only in the sense that the elF 
corresponds closely to the source program, so that the elF does not 
limit the source program performance. Given a direct 
correspondence, source-to-source compiler optimizations (not 
investIgated here) can improve upon the elF performance. 

• The CIF attributes, although not totally realizable, can be used 
constructively to implement high-performance architectures. Flynn 
and Hoevel have termed these architectures direct correspondence 
architectures (DCAs). 

• The description of the Prolog CIF can be viewed as an exposition 
and justification of the W AM model [96].1 The W AM is considered 
a Prolog DCA. 

Flynn and Hoevel [26] define five design criteria for a canonical architecture: 
1. transparency (1:1 rule) - the source and CIF correspond closely 

to one another. 
2. size - the CIF data and instruction objects are as concise as 

possible. 
3. referencing - a minimal number of objects are interpreted. 

4. stability - there is minimal disruption of sequential interpretation. 
5. distance - a minimal number of unique objects are interpreted. 

Each criteria defines a measure that must be optimized to attain the CIF. The 
optimality of these measures cannot be guaranteed for all programs written in the 
source language. For instance, given knowledge of a program, an object 
encoding may be developed requiring less space than the CIF (which is designed 
without specific knowledge of the program). The variance in CIF attribute 
optimality is greater for Prolog than for procedural CIFs because the use of 
dynamic data structures and nondeterminate execution is highly program 
dependent in Prolog. 

The first two criteria comprise the static measures of an architecture. The 
last three criteria comprise the dynamic activity measures of an architecture. The 

1 For another method of justifying the W AM, see Kursawe [46]. 
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dynamic measures are meant to reflect execution performance on three classes of 
machine: low-end, high-end, and confluent (unlimited hardware). Distance is 
not discussed here. 

In the following sections three ClF models are described in terms of the ClF 
metrics above. Measurements of the memory-referencing characteristics of these 
models are presented in the next chapter. The first two ClFs, which are identical 
in construction, are called the naive and traditional ClFs. They are informally 
derived in a manner similar to the formal derivations of Flynn [27] and 
correspond closely to Prolog. The naive model is inefficient because a memory 
reference is required for each identifier referenced in the program. The 
traditional ClF's data traffic is analyzed assuming a more sophisticated host. In 
this case, a memory reference is no longer required for a reference to an identifier 
in the current scope. With the new analysis, the traditional model performs 
significantly better than the naive model, reducing data references by about 79%, 
but the underlying assumptions are shown to be costly to implement for Prolog. 
A register-based ClF is then described, incorporating a two-level name space. 
Under the assumptions of a less costly host, the register-based ClF performs 
reasonably well, reducing the naive ClF data bandwidth by about 14%. 

2.1.1. elF Data Encoding 

In this section, the encoding of data objects used in the ClF architectures is 
described. The data objects manipulated by the Prolog ClF correspond directly 
to the objects manipulated by a Prolog source program. ClF data objects are 
encoded to correspond to the requirements of large Prolog applications programs 
executing on typical hosts. These programs reference many unique atoms, and a 
large number of data objects. Data objects or terms are composed of words, the 
indivisible unit of image storage. A word has a tag and a value, i.e., the ClF is a 
tagged architecture. Tags are necessary to dynamically distinguish between 
different types of data objects in order to implement unification, the fundamental 
Prolog operation. 

A simple term (constant or variable) occupies a single word. An indirect 
reference or pointer to a term also occupies a single word. The indirect reference 
type is necessary to implement shared Prolog variables (see Section 2.1.2). An 
unbound variable is defined as an indirect reference to itself This allows 
creation of a reference to an unbound variable by simply copying (verbatim) that 
value to another location. Although the ClF definition does not constrain the 
word size, the measurements made in this book assume a 32 bit word to facilitate 
comparison between the ClF and the W AM. The 32 bit words permit a large 
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number of unique atoms and a large number data objects in the Prolog image 
store. 

Compound terms (structures and lists) cannot be encoded in a single word. 
As a result, when binding a variable to a complex term, an indirect reference is 
required, pointing from the variable to the term. To speed up unification of 
compound terms, indirect references to compound terms are given tags indicating 
the type of the compound term. Specifically, a structure is encoded as an indirect 
structure reference to a functor word, followed by a single word for each 

argument (lists are described below). Note that a single word is allocated for 
each structure argument. For a simple structure (with simple terms as 
arguments), this is sufficient. A structure which is composed of structures uses 
indirect references to link complex arguments to encompassing structures. Note 
that indirect references to simple terms and to other indirect references do not 
indicate the type of the dereferenced value. This facilitates binding a variable 
because pointers to the variable do not have to be updated to indicate the 
variable's new value type. 

A list is a special type of structure with two arguments. Lists are encoded as 
an indirect list reference directly to the head of the list. The subsequent location 
is the tail of the list. In a legal list, the tail is either another list reference or the 
constant nil signifying the end of list. Lists are not cdr-coded in the Prolog CIF 
to reduce the complexity of the architecture. Preliminary measurements 
indicated that cdr-coding saved an insignificant number of memory references 
for the benchmarks studied in this book. This has also been confirmed for the 
PLM architecture by Touati [86]. 

2.1.2. Naive and Traditional Prolog CIFs 

In this section, a traditional Prolog CIF is defined from the semantics of 
Prolog. The CIF is called "traditional" because it is largely based on the 
procedural language CIFs of Flynn, in contrast to the "register-based" CIF 
introduced in Section 2.1.3. The naive CIF is identical to the traditional CIF with 
the exception of the underlying host assumptions. These differences are 
discussed later in this Section. A Prolog CIF consists of an instruction set and its 
corresponding semantics with respect to a storage model. The following sections 
define the traditional CIF storage model and the instruction set. The traditional 
model is instructive because it corresponds closely to Prolog and clarifies the 
later description of the register-based CIF. 
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Figure 2·1: Traditional Prolog CIF Storage Model 

elF Storage Model 

In this section, the traditional Prolog CIF storage model is defined. The 
storage model cOITesponds directly to the storage constraints imposed by Prolog 
semantics. It is argued that the storage model is "ideal" in the sense that it does 
not constrain reasonable host implementations. An overview of the CIF storage 
model is illustrated in Figure 2-1. The model is a variant of the three-stack 
model introduced in DEC-10 Prolog [93] . The code space is a static area holding 
the CIF program. The heap, stack, and trail are dynamic areas managed in stack
like manners. The thick arrows in Figure 2-1 represent typical indirect data 
references. The thin arrows represent typical management pointers. Only the 
most important connections from one area to another are shown. These 
connections and the individual areas are described below. 

The storage model is centered around the frame (this notation is retained 
from the DEC-tO Prolog architecture) which holds all identifiers referenced 
within a scope. The frame is similar to a contour in procedural CIFs. A Pascal 
contour, for instance, contains labels, constants, local variables, pointers to non
local variables, pointers to global variables, and arguments passed to the 
procedure [91]. A single-level name space is used, wherein the instruction set 
references all objects via contour indices. This minimizes operand size, thereby 
minimizing instruction size. Unlike procedural languages, there are no non-local 
or global objects in Prolog, so these are not present in the frame. In addition, 
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Prolog does not reference labels and constants in a clause multiple times, mainly 
because recursion is used instead of iteration. These objects are directly encoded 
in the instruction stream as immediate operands. The remaining objects in a 
frame, collectively referred to as frame variables, are local variables, and 
arguments passed to the procedure. In addition, the traditional Prolog CIF frame 
also contains state information necessary to implement nondeterminate procedure 
execution. 

Nondeterminate control flow or backtracking in Prolog is the action of 
selecting the most recent entry point with alternatives for a procedure invocation, 
restoring the state of the computation at that point and resuming execution there. 
Abstractly, the alternatives are called branch points because they represent 
OR-branches in the AND-OR tree representing the Prolog proof.2 A unique 
frame is created for each procedure invocation. If a branch point is reached, the 
frame is loaded with additional state values necessary for nondeterminate 
program execution. A possible optimization avoids allocating space for these 
values in the frame until it is known if the procedure invocation is a branch point. 
This optimization is not of concern in the traditional CIF, because CIF memory 
characteristics are measured in numbers of references, not locality. 

Since clauses may be nested, multiple clauses may be active during program 
execution, and therefore multiple frames must be managed. A frame stack is 
utilized, similar to a contour stack in a procedural CIF. Thus the traditional 
Prolog CIF is similar to the DEC-lO Prolog abstract machine. Unlike a 
procedural CIF, a heap is also utilized, as described below. 

A frame variable is allocated only a single word. Binding a frame variable to 
a new structure (or list) is implemented by creating the structure on the heap and 
indirectly referencing the structure from the frame. On the heap, objects live 
until removed by failure.3 Splitting the allocation of simple and complex objects 
onto the stack and heap is necessary because the space required by a scope for 
complex objects cannot be determined at translation time. Consider a variable in 
a clause which may be passed through arbitrary levels of procedure calls until it 
is bound to a structure. Which structure cannot be determined statically, so the 
variable's frame size cannot be calculated. Instead, these "excess" objects are 
dynamically allocated on the heap. 

The two essential control functions of nondeterminate execution in Prolog 
are fail and cut. Therefore the CIF storage model must permit their efficient 

2See Kowalski [45] for a discussion of the AND-OR tree. 

3This is a simple view of the heap that avoids the issue of garbage collection but is sufficient 
for the purposes of this book. 
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implementation, i.e., minimal memory referencing, maximum storage 
reclamation (maximum locality), and fast execution. With this motivation, the 
Prolog CIF nondeterminate execution mechanism is now described and its 
cOlTesponding storage model is shown to facilitate efficient fail and cut. 
Restoring the original state of the computation in general involves the following: 

• restoring the frames active at the most recent branch point. 

• unbinding the values of variables bound since the most recent branch 
point. 

• restoring state variables active at the most recent branch point (e.g., 
stack pointers, etc.). 

All frames in the stack corresponding to threads of execution leading to an 
active branch point must be saved until that procedure fails or succeeds 
unconditionally, i.e., until no alternative clauses exist for that procedure. Viewed 
as an AND-OR tree, all frames on a path leading from the root to an active OR
node must be saved. The most efficient method of implementing this is to freeze 
the stack (and heap) at each branch point, i.e., disallow deallocation of these 
frames. Failure is permitted to unfreeze the stack, discarding the portions of the 
stack and heap more recent than the last branch point. To implement this 
efficiently, the frames corresponding to branch points (called branch point 
frames) are connected in a chain. 

To efficiently implement the task of unbinding variables during failure, the 
address (called the trail address) of each variable bound since the branch point 
must be saved. Since the number of such bindings is unknown at translation 
time, the trail addresses cannot be allocated within the frame. Alternatively, the 
trail addresses could be allocated on the stack as linked objects, independent of 
the frames. However, it is far more efficient to store trail addresses on a separate 
last-in/first-out (LIFO) stack, called the trail stack. The action of saving an 
address on the trail stack is called trailing a binding. The trail stack also permits 
efficient implementation of cut. Cut, like failure, manages the AND-OR tree. 
Cut removes zero or more active branch point frames, allowing subsequent 
backtracking to avoid executing OR branches that do not produce useful 
solutions. Cut can also have the side-effect of deallocating stack frames. Cut, 
however, cannot deallocate trailed addresses, which must be saved and detrailed 
(the locations to which the addresses point must be unbound, i.e., set to unbound 
variables) during the next failure. 

elF Instruction Encoding 

This section describes the traditional Prolog CIF instruction set and encoding 
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methods. eIF instruction and operand names are borrowed from the W AM 
[96] to avoid obscuring the similarities between the two. A mapping for 

algorithmic/scientific languages involves arithmetic operators and variables 
within an assignment statement. In Prolog, the basic semantic operation is 
unification of a source level argument with simple terms as operands. 

For example, consider append/3, which can be used to append two lists: 

append ( [] , X, X) . 
append([XIL1],L2, [XIL3]) '-

append(L1,L2,L3). 

The first clause means that the result of concatenating a list, X, to the constant nil, 
[ ], is list x. The first clause is a simple example that introduces many of the 
correspondence subtleties. Since there are three source level arguments, three 
unification operators are expected. Each operator is a specialized form of 
general unification.4 For example, to match the first argument, the specialized 
unification operator simply checks that the incoming argument is either unbound 
or nil. If unbound, it is bound to nil. Other types of incoming arguments cause 
the operation to fail. The second operator is specialized to match an unbound 
local variable, so it cannot fail. In fact, matching the second argument, in this 
case, requires no work (which is understood at the higher level of the declarative 
semantics). 

Matching the third argument translates into a single operator; however, the 
operation entails an unknown (at translation time) amount of work, i.e., operand 
fetches. X (the second and third arguments) is a shared variable because it 
occurs multiple times within a scope. Shared variables can possibly cause 
additional operands to be referenced from memory when the variables are 
dynamically bound to compound terms and require general unification for 
matching. Thus an accurate operand count cannot be ascertained from the static 
code (c.f., procedural CIFs, where operator and operand counts can be statically 
determined). The following query exhibits this type of behavior - the third 
operator matches the first four elements of the lists before failure: 

?- append([], [1,2,3,4], [1,2,3,4,5]). 

The Prolog elF translates the unification of simple terms and one-level 
structures into one instruction. Unifying a nested structure always requires one 
or more additional instructions. A clause head is matched using get instructions 
and the body goals are set up using put instructions. In the next paragraphs the 
syntactic structures of get and put instructions are described and the informal 
semantics are then given. 

4See Lloyd [48] or Robinson [67] for general unification algorithms. See Tick [84] for the 
unification algorithm used for the measurements presented in this book. 
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The get instructions are composed of a source operand followed by at least 
one destination operand. The put instructions are composed of a destination 
operand followed by at least one source operand. Both sources and destinations 
are frame variables, encoded as indices into the current frame. 

The get destinations and put sources are tagged. These tags indicate the 
format of the operand. In the case of get instructions with a single destination 
(put: single source), the format can be incorporated into the opcode (as in the 
W AM). In the case of multiple destinations (put: multiple sources), the formats 
are separated from the opcode because each operand can have a different format. 
The operands must be processed sequentially, from left to right, for COlTectness 
because the compiler may introduce dependencies between the operands. 

In general, get instructions match their source operand to their destination 
operand(s). Destination operands may be tagged as var, val, or const. A get 
instruction first checks the destination format. If var, it assigns the source to the 
destination. If const, the source is compared to the destination. If val, the source 
is unified with the destination.5 If the comparison or unification fails, the 
instruction fails, i.e., the failure routine is invoked. 

In addition to the get instructions is get_stet (get_list is simply an 
optimized instance of get_stet). Unlike the previously discussed get 
instructions, get_stet takes a variable number of static operands. If the 
source is unbound, the operands are interpreted in write mode. If the source is a 
structure, the operands are interpreted in read mode. Otherwise the instruction 
fails. The source is matched to the first destination operand, which is a functor. 
Then arguments of the source structure are matched to the succeeding destination 
operands. Matching in write mode involves assignment to the heap. Matching in 
read mode involves comparison of terms. 

In general, put instructions assign their source operand(s) to their destination 
operand. Source operands may be tagged as var, val, const, or unsafe. The val 
and const operands are assigned to the destination. An unsafe source operand 
must be moved onto the heap before assignment to the destination, to allow last 
call optimization (described below). A var source operand must first be 
initialized to an unbound variable in the frame before assignment to the 
destination. This allows an optimization wherein the frame is not initialized 
when allocated. 

Some examples of elF code are given in Figure 2-2. Yi and Zi represent 
caller and callee frame variables, respectively, at index i. It is assumed that Zi 

5Prolog unification does not perform an "occurs check," thus a circular term (i.e., a term that 
references itself) can cause an instruction to make an unlimited number of operand requests. 
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append ( [] , X, X) . 
get 

% get 
get 
proceed 

YO, const ( [] ) 
Yl, var (Yl) 
Y2,val(Yl) 

append([X\Ll],L2, [X\L3]) ;- append(Ll,L2,L3). 
get list YO,var(Y3),var(YO) 

% get- Yl,var(Yl) 
get_list Y2,val(Y3),var(Y2) 

% put YO,val(YO) 
% put Yl,val(Yl) 
% put Y2,val(Y2) 

execute append/3 

foo(f(a,b,g(X»,X) ;- bingo(f(a,X,Y,g(Y»). 
% get 

get_stct 
get stct 
put:=stct 
put_stct 
execute 

Yl,var(Yl) 
YO,f/3,const(a),const(b),var(Y2) 
Y2,g/l,vaL(Yl) 
YO,f/4,const(a),val(Yl),var(Yl),var(Y2) 
Y2,g/l,val(Yl) 
bingo/l 

qsort([X\L],RO,R) ;- split(L,X,Ll,L2), 
qsort (Ll, RO, [X \ Rl]) , qsort (L2, Rl, R) . 

get list YO,var(Y6),var(ZO) 
put- Zl,val(Y6) 
put Z2,var(Y5) 
put Z3,var(Y3) 
call split/4 
put ZO,unsafe(Y5) 
put Zl,val(Yl) 
put list Z2,val(Y6),var(Y4) 
call qsort/3 
put YO,unsafe(Y3) 
put Yl,val(Y4) 
put Y2,val(Y2) 
execute qsort/3 

Figure 2-2: Traditional Prolog CIF Clause Examples 

29 
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can be referenced with an offset from the top of stack. In contrast to a procedural 
CIF, the Prolog CIF relies heavily on the optimization of removing no-operations 
(e.g., qet Yl,var(Yl) and put YO,val(YO) - these are marked in 
Figure 2-2 with "%"). 

Various control instructions are present in Figure 2-2. The call instruction 
is used to invoke a procedure, after the caller loads the passed arguments on the 
top of stack. Note that the top of stack is defined as the more recent of the 
current frame and the current branch point frame. The callee allocates a frame 
over the arguments passed from the caller. A large enough frame is allocated to 
contain the maximum number of frame variables in all clauses possibly matching 
a nondeterminate procedure invocation. Figure 2-2 shows only clause code, and 
therefore frame allocation instructions are not given. Note that a nondeterminate 
callee loads state infonnation into the frame during allocation. As previously 
stated, these branch point frames are linked to efficiently implement fail and cut. 

The proceed instruction causes simple procedure return. The execute 
instruction returns through a procedure call. A nondeterminate procedure resets 
its branch point frame to a standard frame when its last alternative clause is 
entered. This facilitates frame deallocation. The proceed deallocates the 
procedure's frame if it is a standard frame on the top of stack. This deallocation 
is performed by resetting the CUITent frame to be that of the immediate ancestor 
of the procedure (its caller). Because the execute first invokes another 
procedure before it returns, the current frame is reused, not deallocated, as is 
explained below. 

Last call optimization, also known as tail recursion optimization (TRO) , 
reuses the current frame (if it is at the top of stack) for the last goal of a clause. 
The fust use of TRO for Prolog was in DEC-lO Prolog [94] and is considered 
essential for the CIF because of Prolog's reliance on recursion instead of 
iteration. Procedural CIFs do not implement TRO because the languages do not 
rely on recursion. Huck [39] reports that typical FORTRAN programs execute 
on average 290 V AX-I 1/780 instructions between procedure calls. In this book 
it is found that on average, Prolog executes 15.3 (W AM) instructions between 
procedure calls (Section 3.2). TRO is necessary to increase frame referencing 
(spatial) locality. Spatial locality is a measure of the locus of memory references 
within the storage model. High locality implies that the storage areas do not 
grow and shrink rapidly. This type of behavior can be exploited by small 
(inexpensive) hardware buffers that capture a large percentage of all memory 
references. Such buffers reduce the effective memory access time thereby 
improving processor performance. The greater the locality, the greater the buffer 
cost-efficiency. 

TRO is implemented in the CIF by passing arguments directly over the 
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caller's arguments via Y operands if the caller's frame is at the top of stack. 
Abstractly, this amounts to deallocating the frame of the current scope just before 
invoking the last goal of that procedure. To avoid leaving references pointing 
into the old frame, frame variables thus referenced (i.e., unsafe operands) are 
copied onto the heap before deallocation. 

Procedural CIFs as defined by Flynn and Hoevel [27], require that objects 
and actions at the architecture level correspond to objects and actions at the 
language level. This requirement ensures that the CIF uses no more storage 
space or interpretation time than described by the source program. The 
languages to which this concept was originally applied are much lower-level 
languages than Prolog. Attributes of these languages are closely related to host 
machine functionality, e.g., the FORTRAN addition operator and its 
correspondence to an ALU add function. 

This view of translation requires transparency between source and object, 
where the only optimizations allowed are at the source level. For a simple 
language, such as FORTRAN, this view is logical - transparency can reduce 
computation complexity and increase reliability. A complex language such as 
Prolog, however, does not have the same strong notion of sequentiality of 
instructions as does FORTRAN. During resolution, head arguments can be 
matched in any order, and when matching an argument which is a complex term, 
subterms can be matched in any order. Thus the traditional view of transparency, 
a direct map between source-level and host-level state transitions, is unmotivated 
and restrictive for Prolog. It is for this reason that the order of the Prolog CIF 
instructions in Figure 2-2 does not always correspond directly to the source 
programs. 

For the Prolog CIF, a tight instruction encoding is assumed. This includes 
variable length instructions on bit boundaries. Local branch targets are encoded 
into either one or two bytes, assuming a sophisticated linker capable of 
determining minimal offsets. Frame variable specifiers are log2 encoded (these 
attributes are further described and measurements are presented in Sections 3.3.2 
and 3.4). Figure 2-3 gives an example of CIF encoding for the inner-loop of 
append/3, in bits. A W AM byte-encoding, using similar offset sizes, requires 
15 bytes, an 88% increase in size. 

CIF Data Referencing 

In this section the CIF data referencing metrics are discussed. The 
interpretation of these metrics is dependent on the underlying host assumed. 
Two hosts are illustrated here - a simple host which holds the image store 
entirely in memory (the naive model), and a complex host which holds the frame 
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operands 
opcode reg tag offset total 

qet_list YO,var(Y3) ,var(YO) 8 6 6 26 
qet list Y2,val(Y3),var(Y2) 8 6 6 26 
execute append/3 ~8 __________ ~1~6~~2~4 

24 12 12 16 64 bits 

Figure 2-3: CIF Instruction Encoding (bits): append/3 Clause 2 

stack in fast memory and the remainder of the image store in memory (the 
traditional model). Additional CIF metrics, not dependent on host, are discussed 
in Section 2.1.4. 

Prolog data references fall into the following main categories: dereferencing 
terms, unifying terms, (un)binding (i.e., binding and unbinding) variables, 
(de)trailing (i.e., trailing and detrailing) bindings, and (preparing for) 
backtracking. Except for binding a variable, analogous to assignment, none of 
these are common in traditional procedural languages. Dereferencing, 
backtracking, and its preparation are discussed in the next section. The 
remaining types of references are discussed in this section. These represent the 
core Prolog operations of passing arguments and binding results. 

Using the translation method described in the last section, references made 
while unifying terms correspond closely to the source language specification. In 
contrast to a procedural language, however, the Prolog specification is 
incomplete, thus minimality of referencing cannot be guaranteed. The nature of 
dynamic structure creation prevents determination (at translation time) of a 
minimal referencing method. For instance, using structure copying (as in the 
W AM and adopted in the CIF), new structures are created by copying pre
existing structures verbatim. Using structure sharing (as in DEC-lO Prolog), 
new structures are created by reusing the skeleton of pre-existing structures, 
copying only variable data. The efficiency of each scheme is dependent on the 
amount and type of structure creation and access in the program, because 
although structure sharing saves copying static parts of a structure, it requires 
indirection in accessing variable parts of a structure (see Mellish [52] for 
discussion). 

One method of analyzing the CIF is to simply count a memory reference for 
each identifier reference in the current scope. This is called the naive elF. 
Manipulation of structures or lists involves extra references, as described below. 
This metric specifies precisely the memory traffic implied by the source program 
making no assumptions about the underlying host. An example of this 
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append ( 
[X ILl] , 

append ( 
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L2, 
[XI L3]) .-

L2, 
L3) • 

read write 

3 2 

3 4 

Figure 2-4: Traditional CIF Data Referencing (words): append/3 
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referencing metric for one pass through the inner-loop of determinate execution 
of append/3 is shown in Figure 2-4, assuming a query such as 

? - append([l,2,3,4], [5,6],X). 

Simple operators, e.g., unification of L2, do not require instructions, because 
the no-operations are removed by the translator. During determinate execution 
the first argument is instantiated and the third argument is uninstantiated. One 
l1lemory read is needed to access the first argument from the frame and check if it 
is a list. Two memory transfers, each consisting of a read and write, are needed 
to load the head and tail from the heap into the frame variables for X and L1. 
Two reads are needed to access the third argument from the frame and 
dereference it. A write is needed to bind the third argument to a list. A memory 
transfer is needed to load X into the head of the list. Two writes are needed to 
load the tail of the list and a pointer to the tail into the frame variable for L3. 

This example shows that referencing requirements are directly specified by 
the program, given knowledge of the argument modes. An argument mode 
indicates whether the passed argument is always bound, unbound, or possibly 
either. Complete knowledge of the argument structure is needed to calculate 
referencing in a procedure clause containing shared variables. Recall that in the 
case of append/3 in Figure 2-4, X is a shared variable. The modes assumed for 
determinate execution indicate that the variable is being copied from the first 
argument to the third argument, therefore complete knowledge of the structure of 
X is not needed to determine the number of references. If however, the modes 
indicate that the first and third arguments are both bound, knowledge of the 
structure of X (i.e., is it a tree, an integer, etc.?) is necessary. 

Note that the binding of the third argument in append/3 is not trailed 
because append/3 is clearly a determinate program. In general, the amount of 
trailing is impossible to determine statically from the source program at 
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translation time. One could trail all bindings, but this is rarely necessary. The 
problem of determining the minimum amount of necessary trailing is addressed 
in the next section. 

An alternative memory-referencing metric, more in keeping with procedural 
CIFs, counts a memory reference for each initial reference to a unique identifier 
in the current scope. This is called the traditional elF. This metric assumes an 
underlying host that can capture subsequent references, e.g., a frame stack buffer 
of unlimited size. An unlimited heap buffer is not considered because the heap 
exhibits significantly less locality than the stack, making such an assumption less 
appropriate. An unlimited trail buffer is not considered, although it could be, 
because trailing does not significantly contribute to memory referencing. Recall 
that a CIF frame holds arguments passed to the procedure and local variables. 
Since neither of these objects requires initialization (e.g., from a skeletal contour 
[91,2]), the alternative referencing metric results in no memory references for 

accessing the stack. Note however that the Prolog storage model also consists of 
a heap and trail. References to these areas (about 25% of all data references in 
typical programs) must be counted. 

The append/3 example is re-analyzed in Figure 2-5. Here the alternative 
metric is calculated, resulting in six memory references as compared to 12 
references in Figure 2-4. Figure 2-5 simply discounts all references to frame 
variables in Figure 2-4. Measurements of both the naive CIF and traditional CIF 
data referencing metrics for large Prolog benchmarks are presented in Section 
3.4. 

append ( 
[XIL1], 

append ( 

L2, 
[XIL3]) 

Ll, 
L2, 

L3) . 

read write 

o 2 

1 3 

Figure 2·5: Alternative CIF Data Referencing (words): append/3 
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2.1.3. Register-Based elF 

A register-based Prolog CIF is defined in this section. This CIF differs from 
the traditional model in that it has a two-level name space, leading to the 
separation of frames into environments and choice points. In this section, 
justifications for constraining the traditional CIF in this manner are given. In 
subsequent sections, the two-level name space, register allocation scheme, 
storage model, and instruction set are described. 

The traditional Prolog CIF previously defined makes no memory references 
when referencing the stack. This measurement assumes a host with a stack 
buffer of unlimited size. Measurements presented in Chapter 4 indicate that for 
typical Prolog programs on the W AM architecture, which has excellent stack 
locality, a 256 word stack buffer reduces memory traffic by about 75%. Almost 
all of the remaining traffic is due to heap and trail references not captured in the 
buffer. In fact, the traditional Prolog CIF will almost certainly have inferior 
locality compared to the W AM, as is discussed in detail in the remainder of this 
section. These results indicate that a costly host (i.e., a host with a fast local 
memory of substantial size) is necessary to achieve the traditional CIF. For 
instance, a real host might use a non-architected cache (i.e., a local memory 
below the level of the architecture). 

Recall that the Prolog CIF is an architecture that does not limit the execution 
of Prolog programs on sufficiently powerful hosts. Consider three types of host. 
In the first host a small register set is implemented, but no stack buffer or cache. 
In this case, the traditional CIF cannot be achieved and a register-based 
architecture will perform better. In the second host, a stack buffer is 
implemented, so that the traditional CIF can be achieved. In this case, the 
traditional CIF is the best architecture if the buffer is large enough. In the third 
host, a general cache is implemented, so that the traditional CIF is achieved, but 
at significant cost. At comparatively little extra cost, a small, relatively Jaster 
register set can also be implemented. Again, a register-based architecture will be 
advantageous. 

Note that the first and third hosts have identical architectures because the 
cache is not explicitly referenced in the instruction set. Considering architectures 
for these hosts, it is beneficial to constrain the traditional CIF. The register
based Prolog CIF is such a model, assuming a host with only a small register set. 

Two·level Name Space 

A two-level name space is used in the register-based Prolog CIF. The first 
level is composed of registers; the second level is composed of environments. 
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Informally, an environment holds local variables of a clause, similar to a frame in 
the traditional CIF model. A more precise definition is given later in this section. 

The register set as defined in this model is a group of words, one per register, 
that is addressed with an index. The major premise is that a host can offer faster 
access to an object stored in a register than to an object stored in an environment. 
In other words, the register-based Prolog CIF restricts the traditional CIF from 
assuming a host with a stack buffer of significant size to the more modest 
assumption of a single, small register set. When calculating the memory traffic 
for the register-based CIF, memory references are counted for all stack 
references, but not for register references. 

Each unique variable in a clause (scope) is allocated either to the register 
space or environment space. These are called temporary and permanent 
variables respectively in order to retain the accepted nomenclature as introduced 
by Warren [96]. A temporary variable is defined informally as a variable which 
occurs in at most one chunk, where the head is considered part of the first chunk 
[17]. A chunk is a possibly empty sequence of safe goals followed by an unsafe 

goal. A safe goal is a built-in goal that does not modify the registers. An unsafe 
goal is a goal which is not safe. A permanent variable is a variable which is not 
temporary. 

Although it is desirable to place all variables in registers, the definition of a 
temporary variable has been restricted. A simple compiler cannot determine 
whether a temporary variable will survive through a user-defined goal invocation 
(procedure call), i.e., whether a given register will be modified by the callee. 
Inexpensive and therefore simple register allocators are assumed here. Thus a 
variable whose lifetime extends beyond one chunk is categorized as permanent. 

The single register set is shared by all clauses in the program. For each 
procedure call, arguments are passed through the registers (also called the 
argument registers). For very tight call loops (e.g., append/3) TRO operates 
entirely from the register set and no environments need be allocated. There are 
also disadvantages to using registers. For instance, a caller may pass some 
arguments to a callee through the registers. The callee allocates a subset of the 
arguments as permanent variables and must subsequently move them into its 
environment. If this register-to-memory transfer is verbatim, i.e., no useful 
unification is performed, then it is purely an artifact of the register-based 
architecture. This overhead is avoided in the traditional Prolog CIF. 

The new storage model, illustrated in Figure 2-6, is similar to that of the 
traditional Prolog elF (Figure 2-1). The thick arrows in Figure 2-6 represent 
typical indirect data references. The thin arrows represent typical management 
pointers. Only the most important connections from one area to another are 
shown. These connections and the individual areas are described below. The 
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Figure 2-6: Register-based Prolog CIF Storage Model 
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TRAIL 

address 

major difference between the traditional and register-based storage models is that 
the latter splits a frame into an environment and choice point, allowing separate 
stacks for these objects. Figure 2-6 illustrates such a model. 

Since arguments are passed through registers, there is no need to allocate 
arguments in an environment belonging to a determinate procedll!'e. Instead, 
choice points and environments can be defined as independent objects. A choice 
point holds the arguments passed to a nondeterminate procedure and the state 
register values (so that these values can be restored upon failure). In addition, 
clauses composed of a single chunk do not have any permanent variables, and 
therefore do not require an environment. 

In the traditional Prolog CIF, a frame is created for each procedure 
invocation. In the register-based CIF, an environment is created for each clause 
invocation, when necessary. A choice point is created for each nondeterminate 
procedure invocation. Since there may be multiple branch points active at any 
one time during program execution, multiple choice points must be managed. 
The most efficient manner of managing the choice points is in a LIFO stack. 
Informally, failure restores the current (top) choice point. 

Choice points can be allocated either on the environment stack (as in the 
W AM), or on a separate choice point stack. In either case, a choice point must 
freeze all previously allocated environments to allow failure to properly restore 
them. If choice points are allocated on the environment stack, cut can be 
implemented with relative efficiency, but because environments must not be 
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removed by cut, cut is less effective in pruning the stack and thereby improving 
locality. Similarly, if choice points are allocated on the heap, cut cannot be 
efficiently implemented. If not for cut, failure would be the only operation 
managing these areas, and either a choice-point/trail-stack or choice-point/heap 
combination would be advantageous. 

If a choice point stack is used in addition to the environment stack, managing 
the separate stacks requires additional memory references, but greater locality is 
attained. These tradeoffs are quantified in the next chapters. In addition, trail 
addresses could be allocated on the choice point stack. A separate trail stack is 
more efficient, however, because the choice points are manipulated not only for 
failure, but also for cut. Unlike failure, cut does not restore the computation at 
the selected choice point. Therefore cut must not prune the trail (or heap or 
stack). If trailed addresses are stored on the choice point stack, cut cannot be 
implemented to reclaim the maximum amount of stack space. 

Instruction Encoding 

This section describes the register-based Prolog CIF instruction set and 
encoding methods. The register-based instruction set is similar to that of the 
traditional Prolog CIF. The major difference is the pervasive use of register 
operands. 

As previously described (for the traditional Prolog CIF) the CIF translates 
the unification of simple terms and one-level structures into one instruction. A 
clause head is matched with get instructions and the body goals are set up with 
put instructions. In the case of the register-based CIF, the get sources and put 
destinations are temporary variables (registers), whereas the get destination(s) 
and put source(s) can be both temporary and permanent variables. 

The get and put instruction semantics are the same as specified in Section 
2.1.2, with the exception of put with a var source operand. Recall that put 
instructions assign their source operand(s) to their destination operand. A var 
source operand must first be initialized to an unbound variable before assignment 
to the destination. For temporary variables, the unbound variable is created on 
the heap because an unbound variable cannot reside in a register (an unbound 
variable resides in either the heap or stack - it cannot exist solely in a register, 
which has no associated address). For permanent variables, the unbound variable 
is created in the environment. 

Some examples of register-based CIF code are given in Figure 2-7. On 
careful examination, this CIF is similar to the W AM (described in Section 2.2.2), 
with get/put _list/ structure encoded in a variable length instruction. 
Comparing this approach with a procedural CIF, the fundamental difference is 
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append ( [] ,X,X) . 
get 

% get 
get 
proceed 

XO, const ( [ ] ) 
Xl, var(Xl) 
X2,val(Xl) 

append([XIL1],L2, [XIL3]) :- append(Ll,L2,L3). 
get list XO,var(X3),var(XO) 

% get- Xl,var(Xl) 
get list X2,val(X3),var(X2) 

% put- XO,val(XO) 
% put Xl,val(Xl) 
% put X2,val(X2) 

execute append/3 

foo(f(a,b,g(X»,X) :- bingo(f(a,X,Y,g(Y»). 
% get Xl,var(Xl) 

get stet XO,f/3,eonst(a),eonst(b),var(X2) 
get-stet X2,g/1,val(Xl) 
put-stet XO,f/4,const(a),val(Xl),var(Xl),var(X2) 
put-stet X2,g/1,val(Xl) 
execute bingo/l 

qsort([XIL],RO,R) :- split(L,X,Ll,L2), 
qsort(Ll,RO, [XIR1]) ,qsort(L2,Rl,R). 

allocate 
get list XO,var(YS),var(XO) 
get- Xl,var(Y4) 
get X2,var(Y2) 

% put XO,val(XO) 
put Xl,val(YS) 
put X2,var(Y3) 
put X3,var(YO) 
call split/4 
put XO,unsafe(Y3) 
put Xl,val(Y4) 
put list X2,val(YS),var(Yl) 
call qsort/3 
put XO,unsafe(YO) 
put Xl,val(Yl) 
put X2,val(Y2) 
deallocate 
execute qsort/3 

Figure 2-7: Register-based Prolog elF Program Examples 
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the use of registers and subsequent requirement of register allocation. This is not 
significant in the measurements presented in this book, where an unlimited 
number of registers are assumed, so that reasonable allocation is possible 
(although not perfect, in the sense that inter-procedural allocation is not done). 
For the benchmarks measured in subsequent chapters, rarely are more than eight 
registers used by this simple type of allocation. 

The call and proceed instructions in the register-based elf are similar to 
those of the traditional elf. Specific allocate and deallocate 
instructions manage environments for each individual clause. TRO is therefore 
implemented with an explicit deallocate followed by an execute. Note 
that TRO is as efficient as in the traditional elf - instead of overwriting the 
current frame, the temporary registers are overwritten. 

The register-based elf incurs frequent (de)allocation of environments during 
the execution of nondeterminate code because each clause is managed 
independently. The traditional elf (de)allocates a frame only once per procedure 
invocation. Recall that the traditional elf, however, must allocate frames with 
space enough for the maximum number of frame variables among the possibly 
matching clauses. Therefore the register-based elf reduces environment size by 
incuITing management overheads. In the emulator described in this book, the 
cost of allocating and deal locating an environment in the register-based elf is 
six memory references, so this overhead is significant. 

The qsort/3 code in Figure 2-7 illustrates another overhead of the 
register-based elf - the register transfer overhead. The qet Xl, var (Y4) 
and qet X2, var (Y2) instructions in qsort/3 are not necessary in the 
traditional elf. They are present here because these arguments (RO and R) are 
permanent variables and so they must be loaded into the environment. For the 
benchmarks studied in this book, 6.1 % of the W AM instructions executed are of 
this type, generating 3.6% of the total memory traffic (see Table B-2 in Appendix 
B). Because the register-based elf instruction set is more tightly encoded than 
the W AM, these register transfer instructions represent greater overhead, by 
percentage, in the elf. 

The register-based Prolog elf is encoded in a manner similar to the 
traditional Prolog elf. The only difference is that temporary register operands 
cannot be log2 encoded, resulting in slightly larger code. Figure 2-8 gives an 
example of elf encoding for the determinate execution of the second clause of 
append/3, in bits. In this example, four bit register specifiers give a total of 76 
bits, compared to 64 bits for the traditional elf, a 19% increase in size. 
Register-based elf data referencing for append/3 is identical to the traditional 
elf count given in Figure 2-5 because in this case, the register-based elf 
operates solely from registers without accessing the stack. 
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operands 
opcode reg tag offset total 

get_list XO,var(X3),var(XO) 8 12 6 26 
get list X2, val (X3) ,var (X2) 8 12 6 26 
execute append/3 ~8 __________ ~1~6~~2~4 

24 24 12 16 76 bits 

Figure 2·8: CIF Instruction Encoding (bits): appendJ3 Clause 2 

2.1.4. Other elF Metrics: Stability 

In the previous sections, Prolog CIF metrics for transparency, program size, 
and memory referencing are introduced. Examples of these metrics are given for 
the traditional and register-based CIFs. In this section, another important metric, 
stability, is described. Stability measures the (potential) disruption to sequential 
interpretation of a program. Stability measures include: 

• the number of state transitions within a scope (indexing) 

• the number of state transitions between scopes (call/return) 

• the number of state transitions between a scope and a trap handler 
(failure) 

• the number of identifiers requiring a computation to map a name into 
a value (dereferencing) 

• the number of binding operations potentially requiring unbinding 
operations upon failure (trailing) 

Call/return instructions, similar to those of conventional architectures, will 
not be discussed further. Statistical results gathered in this study indicate that 
dereferencing is minimized with the rule introduced in the W AM: dereference 
only when necessary. One explanation of this is that Prolog programs produce 
very short pointer chains (almost always one or no indirections). Therefore, pre
dereferencing or saving of dereferenced values has little advantage. The 
following sections define the stability measures for trailing and indexing in 
detail. The discussion centers around the traditional CIF, however, the 
comments hold equally well for the register-based CIF. 

Trailing 

A trail function is sought with which each binding is tested to determine if 
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the binding needs trailing. Two criteria must be met. The function must cost less 
than the memory write needed to trail the binding and must filter out a large 
percentage of the bindings, i.e., must reject trailing for a large percentage of 
bindings. 

Note that all bindings reside either in the heap or in frame variables in the 
stack. Recall that failure deallocates portions of the stack and heap created after 
the most recent or current branch point. Thus bindings in these now deallocated 
areas did not need to be trailed. The trail function is an address comparison 
between the location to be bound and the locations in the stack and heap to be 
backtracked to in case of failure. The W AM performs a trail test of this type. 

Recall that detrailing is the operation, during failure, of reading entries from 
the trail and resetting the corresponding locations to unbound, i.e., unbinding 
them. The writes can be filtered with an "inverse trail test," to check whether the 
locations are still in the machine state. An object may have been trailed, yet is no 
longer in the valid heap or stack, because a cut may have reset these areas. In 
fact, the trail function and inverse trail function are identical. 

Another implementation of this optimization is to garbage collect the trail, 
using the inverse trail test, during a cut. This also increases the locality of the 
trail. Trail entries rejected by the test must be either marked invalid, or removed 
from the trail. If they are simply marked, detrailing must be prepared to interpret 
them. If they are removed, each entry in the trail must be read and rewritten 
during garbage collection. Thus the only advantage of garbage collecting the 
trail is to minimize its size. 

Consider the following optimization. If successful execution can be 
guaranteed over some segment of the program ending in a cut, then the trail test 
over that segment can use a restricted trail test, i.e., using the branch point frame 
to be cut to. A restricted trail test reduces the number of trailed objects. The 
problem with implementing this optimization is determining that a given 
program segment succeeds. If success cannot be guaranteed then the restricted 
trail test does not work. 

Another way to view this idea is as follows. It has been observed herein that 
in certain programs the trail writes exceed trail reads by a significant ratio (as 
high as 3: 1 for the W AM). This indicates that deterrninancy in the program is 
not being detected by the architecture, which is doing extra work trailing 
bindings that are never undone. An example of this phenomenon is the 
procedure integers/3, shown in Figure 2-9, which creates a list of sequential 
integers. 

The first clause repeatedly succeeds while building the list. Finally, the first 
clause fails into the second clause which closes the list. For each recursive call 
of the first clause, the callee matches the third argument, a variable in the caller's 
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integers(N, Max, [NIRest]) 
N < Max, 
! , 
Nl is N+l, 
integers (Nl, Max, Rest). 

integers (_, _, [ ] ) . 

Figure 2·9: Prolog Program Example: Max-N+l Trails 

integers(N, Max, L) 
N < Max, , . , 
L = [N I Rest] , 
Nl is N+l, 
integers (Nl, Max, Rest). 

integers (_, _, []). 

Figure 2·10: Prolog Program Example: No Trails 

integers(N, Max, L) .
N < Max, 
L = [NIRest] , , . , 
Nl is N+l, 
integers (Nl, Max, Rest). 

integers(_, _, []). 

Figure 2·11: Prolog Program Example: Moving Comparison Into "Head" 

frame, against a list. This structure creation requires trailing the argument in case 
the first clause fails. In practice however, the first clause succeeds Max-N times 
and fails only once. Therefore the ratio of trail writes to reads is Max-N+ 1: 1. 

An alternative encoding of this procedure is shown in Figure 2-10. By 
moving the binding of the third argument after the cut, no trailing is done 
because the cut resets the current branch point frame to before the caller's frame. 
This modification presupposes that binding the third argument can be placed 
after the cut, i.e., that the passed parameter is unbound. If the procedure is to be 
used to check the sequentiality of a list of integers, then this modification is 
erroneous because the base case (second clause) would not be reached. The 
modification could be done by a compiler given the mode declaration 
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integers(+,+,-)~ 
Notice that the optimization given in Figure 2-10 is different than moving 

the arithmetic comparison as shown in Figure 2-11. This can be done 
independently of modes and simply moves the comparison, which binds no 
variables, before matching the third argument. A compiler should be readily able 
to do this also. In the Prolog ClF, these compiler optimizations are not assumed. 
Both trailing and detrailing functions are included however, and measurements of 
their efficiency are presented in the next chapter. 

Indexing 

In Prolog, invocation of a procedure causes the selection of a clause of that 
procedure to execute. Alternative clauses satisfying a nondeterminate procedure 
must be attempted in their textual order. A trivial selection strategy is to 
sequentially attempt to match each and every clause of the procedure. Indexing 
methods are selection strategies which improve upon the trivial strategy. In this 
section, motivations for designing efficient indexing methods are given. 
Indexing in the W AM and the Prolog ClF are then described. Measurements of 
indexing efficiency are presented in Section 3.4. 

Failures occur within get instructions and built-in predicates. Consider an 
instruction failing in the currently executing procedure. There are two types of 
failure: either an alternative clause exists and is entered as a result of the failure, 
or the failure immediately causes the entire procedure to fail because no 
alternative clauses exist. Occurrences of the latter type of failure cannot be 
minimized in the ClF because they are representative of nondeterministic 
program execution (recall that the translation from Prolog source to ClF is quite 
simple and cannot analyze these occurrences statically). The former type of 
failure, called head failure or shallow backtracking, is indicative of a non
optimal clause selection strategy. This type of failure can be minimized with 
better indexing. 

Indexing, as introduced for the W AM, hashes the first passed argument into 
a table of possible clauses [96]. The resulting selection may be a single clause if 
there are no collisions, or a group of clauses. This method significantly improves 
upon the trivial selection strategy, if programs properly utilize the first argument. 
Ideal indexing is a selection method introduced for the Prolog ClF. Ideal 
indexing chooses the correct clause, expending no extra work (i.e., instructions 

6Mode annotation was first introduced in DEC-IO Prolog [12]. u+u specifies that the 
corresponding argument is bound. "-" specifies that the corresponding argument is unbound. 
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executed and memory references made), unless one the following conditions 
exists: 

1. The head of a clause matches, but the body fails - this requires 
work to match the head. 

2. Shared variables in the head of a clause fail to unify - this requires 
work to partially match the head. 

For two or more of these occurrences, work is also required to initially load the 
state values into the branch point frame, and restore these values for each failure. 

Ideal indexing is a CIF attribute introduced to maximize the stability of state 
transfers. Indexing reduces clause-to-clause transfers and failures. It also 
reduces overall memory referencing because work matching clause heads, and 
the loading and restoring of branch point frames, is avoided. The previous 
definition specifies that an ideal index expends no extra work when selecting a 
clause. In other words, the work required to match a head successfully is meant 
to approximate the work required to select the clause, the assumption being that 
the head variables are bound during the indexing. 

Ideal indexing is simulated (using the tools described in Section 3.1) because 
it cannot be analyzed statically. The simulator discounts work expended in 
matching clause heads which fail because of mismatched ground variables. For 
example, trying to unify f (a, b, c) with f (X, b, z) fails, and is discounted. 
Trying to unify f (a, b, c) with f (X, b, X), however, fails but is counted 
because indexing cannot test shared variables. Consider the following procedure, 
forthequery"?- p(3,b)." 

p(l,a) . 
p(X,b) :- X = 2. 
p(X,b) :- X = 3. 

Ideal indexing discounts any work attempted to match the first clause. The work 
required to execute the second and third clauses is counted. Loading state values 
into the branch point frame in the second clause and the failure sequence 
restoring those state values for the third clause are counted. For the query 
p (2, b), however, loading the branch point frame in the second clause should 
be counted for ideal indexing because although the last clause is not executed, 
this cannot be determined a priori. The simulated model is not sophisticated 
enough to catch this subtlety and as a result, does not account for this overhead. 
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2.1.5. Summary 

In this section, Prolog canonical interpretive forms (CIFs) are defined from 
the semantics of Prolog with some ideas bOITowed from existing Prolog 
architectures. The CIFs define the measures that limit the execution performance 
of Prolog (measurements of the characteristics of the Prolog CIFs are presented 
in Section 3.4). Initially naive and traditional Prolog CIFs are described - they 
are based on the procedural CIFs given by Flynn and Hoevel [27]. The naive 
model assumes a simple host with no fast memory. The traditional model 
assumes a host implementing a stack buffer of unlimited size. It is argued that 
such an assumption is ill-directed for Prolog, where only 75% of the data 
references are to the stack. To achieve canonical performance somewhat costly 
hosts must be assumed. A real host might use a non-architected cache, for 
instance, to attempt to achieve the traditional CIF's performance. Other hosts 
may choose not to incur the expense, and therefore cannot achieve even a 
fraction of the traditional CIF's performance. In anticipation of this, it is 
beneficial to constrain the CIF so that the CIF does not rely on the assumption of 
a stack buffer of significant size. A register-based Prolog CIF is defined which 
assumes a host with only a single, small register set. Inexpensive hosts (with 
only registers) achieve greater performance with this constrained CIF than with 
the traditional CIF. Expensive hosts (with caches) have the opportunity, by 
implementing fast registers at a possibly small cost increase, to also achieve 
greater performance with the constrained CIF. 

The register-based CIF naturally leads to direct correspondence architectures 
(DCAs) for Prolog, i.e., architectures that can be implemented on realistic hosts. 
The W AM architecture, defined in Section 2.2.2, can be viewed as such a DCA. 
DCAs based on the traditional Prolog CIF, such as the DEC-lO Prolog model 
described in the next section, may offer better performance than the W AM on a 
host with a large stack buffer or register window set. Even on these powerful 
hosts, however, the performance differential between the traditional and register
based DCAs is not anticipated to be large. On conventional hosts, the register
based DC As are superior to the traditional DCAs. For this reason, the W AM 
architecture is chosen throughout the remainder of this book as the compiler 
target for the Prolog benchmarks studied. 
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2.2. Environment Stacking Architectures 

The Prolog architecture family presented in Section 2.1 is an environment 
stacking model. The first environment stacking architecture was introduced in 
DEC-lO Prolog [93].7 Historically, the W AM was derived from DEC-IO Prolog. 
It should be noted that the environment stacking model is not the only successful 
model used to implement Prolog. The original version of Symbolics-3600 
Prolog uses a goal stacking model [97]. This architecture was chosen for the 
Symbolics implementation because it maps well onto the Lisp computational 
model and the 3600 organization [80]. The goal stacking model was not chosen 
as the basis of the Prolog CIF, nor will it be discussed in detail this book, because 
the environment stacking model has superior memory referencing characteristics. 

In the goal stacking model, upon successful unification of a clause head, 
stack frames are created for each goal of the body. The stack therefore exactly 
mimics the resolvent of a proof as calculated with paper and pencil. This 
decreases the stability and compactness of the stack, reducing locality, as 
compared to the environment stacking model. In addition, because resolution 
replaces the top goal of the stack by the body of a matching clause, variables 
resident only in that goal must be transferred to the heap to prevent them from 
being overwritten. The check necessary to determine if a variable needs to be 
transferred must be performed at runtime. Although the environment stacking 
model also requires this safety operation, its frequency can be reduced by static 
analysis. 

In the remainder of this section, both the DEC-lO Prolog and the W AM 
implementations of the environment stacking model are described and compared. 
This constitutes a more conventional explanation of the W AM than that of the 
previous section. 

2.2.1. DEC-IO Prolog Abstract Machine 

The DEC-lO Prolog architecture developed by D.H.D. Warren, as described 
in [94], is called the Prolog-lO model in this book. The stack (called the local 
stack) corresponds roughly to a conventional language's procedure invocation 
stack. A Prolog-lO frame is a variable-length stack frame holding the 
procedure's local variables, the arguments passed to the procedure, bookkeeping 

7The phrase "environment stacking" was not coined until the WAM [96]. but it is used 
informally here. 
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information, and, if the procedure is nondeterminate, information needed to retry 
the procedure at its next clause. Thus the frame is similar to the traditional 
Prolog CIF frame introduced earlier. 

The Prolog-lO model is built around several state registers. The registers 
related to the local stack and necessary for the purposes of this discussion are L, 
the current local stack frame, and BL, the current backtrack frame. The top of the 
stack is defined as the greater of BL and L. The current frame pointed to by L 

heads a continuation chain of frames corresponding to the resolvent of the proof. 
An additional backtrack chain of possibly interspersed frames is headed by BL. 

These frames belong to nondeterminate procedures and are called backtrack 
frames. 

The Prolog-lO calling convention is as follows. The caller loads arguments 
into dedicated argument registers and control is passed to the callee. The callee 
loads these registers into its empty frame. Indexing instructions select a callee 
clause to try. A nondeterminate callee also loads backtracking information from 
the state registers into its frame. Specialized unification instructions in the head 
of the selected clause attempt unification against the arguments. If the match 
succeeds, an enter instruction is executed which saves certain bookkeeping 
information in the frame, completing the frame. The goals are then called 
sequentially. 

Failure occurs when a goal cannot be satisfied; i.e., when the caller's 
arguments fail to unify with a callee's head. Failure restores the current 
backtrack frame by assigning L=BL. Note that if the current backtrack frame is 
already on the top of the stack, the state registers have not changed - this is 
called shallow backtracking. If this is not the case then the bookkeeping 
information in the new current frame must be restored (deep backtracking). In 
either case, any bindings made by the unsuccessful goal are undone and 
execution proceeds with an alternative clause. The Prolog-IO model handles 
shallow backtracking efficiently. The price for efficient backtracking is the 
calling convention having the callee always load the argument registers into its 
newly formed frame and the overhead of always referencing variables from the 
frame to avoid refreshing the argument registers upon backtracking. 

Cut is implemented in the Prolog-IO model by traveling down the backtrack 
chain until a frame is found predating the current frame. BL is assigned to point 
to this backtrack frame, trimming the stack. 

ZIP and NIP, developed by Byrd [9] and Bowen [10] respectively, are 
environment-stacking models that form an architectural midpoint between 
Prolog-lO and the W AM. NIP, an improved version of ZIP, has a storage model 
with frames similar to those of Prolog-lO. The NIP abstract machine is an 
improved (cleaned-up) version of the Prolog-lO abstract machine, similar in 
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E current environment 
B CUlTent choice point 
H heap pointer 
HB heap backtrack pointer 
TR trail pointer 
P current instruction pointer 
CP continuation instruction pointer 
S heap structure pointer 
xO • • • X15 argument registers 

Table 2·1: W AM Model State Registers 

many respects to the W AM. The NIP compiler moves certain primitive goals 
(e.g., var/l, cut/O, etc.) appearing immediately after the neck of a clause to 
before the neck. This further optimizes shallow backtracking by allowing failure 
to occur earlier, before work is expended completing the frame. Note that NIP 
differs most significantly with the W AM in that it does not have indexing. 

2.2.2. Warren Abstract Machine 

The W AM is a more recent environment-stacking model developed by 
D.H.D. Warren [96], based on the Prolog-l0 and NIP models and first 
implemented for the V AX. The W AM model defines a stack with two types of 
variable-length frames: environments and choice points. An environment holds 
only local variables and bookkeeping information. A choice point holds 
arguments passed to a nondeterminate procedure and backtracking information. 
A continuation chain links environments and a backtrack chain links choice 
points. This separation permits compiler optimization of choice point allocation 
only where necessary. 

The W AM model has state and argument registers, summarized in Table 2-1, 
which are similar in function to those of the Proiog-IO model. The stack is also 
managed similarly - the top of stack is the more recent of E and B. The 
backtracking information in a choice point includes a pointer to the environment 
active when the choice point was created. 

The W AM model calling conventions are as follows. The caller loads 
arguments into dedicated argument registers and control is passed to the callee. 
Indexing instructions select a callee clause to try. If the callee is nondeterminate, 
i.e., if indexing cannot narrow down the field of possibly matching clauses to 
one, a choice point is created and loaded with the argument registers and 
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backtracking information (E, B, H, CP, P, TR). Specialized unification 
instructions in the head of the selected clause attempt unification against the 
arguments. If the match succeeds, the goals of the clause are called sequentially. 

Failure restores the machine state from the current choice point, which is left 
in place (a subsequent instruction will remove the choice point if no alternatives 
remain). TR, CP, P, E, and the argument registers are reloaded with values from 
the choice point. H is reloaded from HB, a state register which mirrors the H 

value saved in the choice point. Shallow backtracking occurs when the current 
choice point is the most recent frame on the stack. Otherwise deep backtracking 
occurs and resetting B trims the stack. 

In the case of shallow backtracking, restoration of E and CP is unnecessary· 
because head unification cannot modify these registers. As mentioned, the 
Proiog-IO model avoids saving and restoring these registers with the enter 
instruction. It is also possible that the argument registers have not been modified 
before head failure. This cannot be guaranteed by compilers that overwrite 
registers during head unification. If this optimization is removed, saving and 
restoring argument registers is unnecessary until after the clause body is entered. 
With these two modifications, the W AM model approaches the Prolog-lO 
model's shallow backtracking efficiency. 

One method by which cut can be implemented in the W AM model is by 
assigning B to the choice point immediately preceding the current environment. 
If the current environment is nondeterrninate, B is reassigned to point to the 
choice point before this choice point. The action of resetting B may trim the 
stack. This implementation of cut is adopted here. 

2.2.3. Comparison Between Prolog-10 and WAM 

To compare the WAM and Prolog-lO, consider the program in Figure 2-12. 
As described in the previous section, the W AM model [96], and the Proiog-IO 
model [94], do not correspond precisely to either the W AM variant measured in 
this book (introduced in the next section), nor to actual DEC-tO Prolog. For the 
purposes of comparison, however, the models described here are sufficient to 
approximate the performance of the actual architectures. 

Table 2-2 shows the correspondence between the Proiog-IO frame and the 
W AM choice point and environment. For instance, P (B) represents the 
instruction pointer, P, saved in the current W AM choice point, pointed to by B. 

Thus P (B) indicates which instruction to execute next on backtracking. BP (L) 

corresponds to the same Proiog-IO information. Note that because the W AM 
splits the Prolog-lO frame into a choice point and environment, sometimes 
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a(a,X) :- b(X). 
a(b,X) .- b(X),c(X),d(X). 
a(c,l). 

z (a,X) :- b(X). 
z(b,X) :- b(X) ,c(X) ,d(X). 
z(c,l) . 
z(_,_) . 

b (1) . 
c (1) . 
d (1) • 

Figure 2·12: Program Example: W AMlProlog-1O Comparison 

51 

redundant information is saved, as E (B) ;: E (E) and CP (B) ;: CP (E). This 
happens whenever a choice point followed by an environment is created for the 
same clause. 

To determine the differences in execution between the W AM and Prolog-lO 
models, various queries of the program in Figure 2-12 are considered. The 
queries are described in Table 2-3. The machine code and traces used to 
calculate these statistics are listed in Tick [85]. Table 2-3 lists the query, the 
success or failure of the query, the number of memory references made by each 
model, and the difference between memory reference counts. Also listed are 
whether the W AM model builds a choice point and an environment. The 
Prolog-IO model builds a frame for all queries and saves backtracking 
information only for the z/2 queries, i.e., the nondeterminate traces. 

A hypothesis is that the W AM will do better (i.e., make fewer memory 
references) for determinate traces, Prolog-10 will do better for shallow 
nondeterminate traces and both will be equal for deep non determinate traces. 
Table 2-3 supports this hypothesis. Determinate execution of a/2 favors W AM 
by four to eight memory references. Deep backtracking (z (a, 2) and z (b I 2) ) 
marginally favors Prolog-1O by one to three memory references. Shallow 
backtracking, z (c, 2) , favors Prolog -10 by six memory references. 

One place where the shallow backtracking savings occur is the Prolog-l 0 
enter instruction which separates the head and body of a clause. The enter 
instruction saves G, CL and CP (equivalently, H, E and CP for the W AM), which 
are later restored in the optimized last call by the depart instruction. If the 
head is not completed, i.e., it fails, the enter is never executed. The fail 
operation does not restore G, CL or CP because they are not modified in the head. 
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WAM 
B(B) 
H(B) 
E(B) 
CP (B) 
TR(B) 
P (B) 
Al. .Am(B) 

E(E) 
CP(E) 
Yl •. Yn(E) 

Prolog-lO 
BL(L) 
G(L) 
CL(L) 
CP (L) 
TR(L) 
BP (L) 
Al. .Am(L) 

CL(L) 
CP (L) 
Yl. . Yn (L) 
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contents 
pointer to previous choice point 
pointer to heap frame for choice point 
pointer to environment 
continuation pointer 
pointer to trail 
pointer to instruction to try next 
arguments 

pointer to previous environment 
continuation pointer 
variables 

Table 2-2: W AM and Prolog-tO Stack Correspondence 

memory references 
guery cU env status Prolog-lO WAM diff 
a(a,l) no no succeeds 5 0 +5 
a(b,l) no yes succeeds 14 6 +8 
a(c,2) no no fails in head 4 0 +4 
a(a,2) no no fails in first goal 5 0 +5 
a(b,2) no yes fails in first goal 8 4 +4 
z(a,l) yes no succeeds 11 8 +3 
z (b, 1) yes yes succeeds 11 16 -5 
z(c,2) yes no fails in head 11 17 -6 
z(a,2) yes no fails in first goal 16 17 -1 
z (b, 2) yes yes fails in first goal 18 21 -3 

Table 2-3: W AM and Prolog-tO Memory Referencing 

Familiarity with the W AM will no doubt cause confusion as to why G, the heap 
pointer, cannot be modified in the head. This is because Prolog-tO uses structure 
sharing to represent terms in the heap. Since the W AM uses structure copying, H 

may be modified in the head, but E and CP are not. 
If the W AM is modified to save E and CP in an instruction similar to 

enter, this would save four memory references (two writes and two reads) 
during shallow backtracking. Assuming that fetching the new enter instruction 
itself requires a one byte memory reference, the savings is reduced to 3.75 
references. This savings can be attained only if shallow failure is distinguished 
from deep failure, to avoid restoring E and CP from the choice point in the 
former case. The conclusion here is that the W AM can be modified to 
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advantage 
Prolog· to 
saves args once 
per procedure 

WAM 
references args from 
registers 

disadvantage references args restores args once 
from environment per clause 

Table 2·4: Prolog-lO - WAM Tradeoffs 
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incorporate Prolog-lO optimizations, although the savings may not outweigh the 
implementation overheads. 

Another area where savings might occur is the method of saving arguments. 
In the Prolog-lO model, arguments are saved in an arrive instruction and then 
referenced from the environment by subsequent body instructions. The W AM 
model also saves the arguments (in a choice point by the trY_Me_else 
instruction) but references them from the register set (possibly modifying them). 
Thus failing clauses require the register set to be refreshed from the choice point. 
The trade-off here is summarized in Table 2-4. 

A possible hardware solution to this problem is to flag modified argument 
registers in the W AM. If none are dirty, restoration may be skipped on failure. 
Although shallow backtracking may still entail modification of argument 
registers (while setting them up for a body which is never entered), most unit 
clauses can be compiled to avoid modification. Turk has also suggested this 
solution [87]. 

Register window sets are another idea to solve the register modification 
problem. In the simple case of shallow backtracking, the register window 
scheme is as follows. A clause matches its head from one window and places 
arguments to its first goal in an alternative window. Recovery from head failure 
is automatic. For more complex execution scenarios, however, register windows 
are more appropriate for the Prolog-lO architecture than for the W AM. A 
Prolog-IO frame maps well onto a window, whereas the W AM requires splitting 
windows between environment and/or choice point objects. Borriello et. al. 
[8] suggest using the SPUR processor's register windows for choice points 

only. Measurements presented in Chapter 3 suggest, however, that shallow 
backtracking is the predominant form of nondeterminate execution in Prolog 
programs. This implies that a single choice-point buffer, like that of the PLM or 
Pegasus, is sufficient to capture most choice point traffic. Therefore allocating 
an entire set of register windows for the choice point stack is not cost-effective. 

On the SPUR, environments cannot be allocated in register windows because 
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registers are not mapped onto memory addresses. Therefore an unbound variable 
(which points to itself) cannot reside solely in a register. Stack memory 
addresses can be aliased onto the register windows at the cost of additional 
hardware [42]. Simple aliasing hardware has the disadvantage of requiring that 
contiguous windows correspond to contiguous memory addresses. This implies 
that the advantage of overlapping windows can be gained only if the caller's 
environment is at the top of stack. 

2.2.4. Lcode Architecture 

The instruction set used in this study, called Lcode, derives from both the 
W AM model and the Berkeley PLM architecture [24]. About 90% of these 
instruction sets are identical. Differences between the models are detailed in the 
remainder of this section. 

Lcode Instruction Set 

Lcode is introduced by means of the flattenCode/3 example presented 
earlier in Section 1.1. The flattenCode/3 Lcode, annotated with the Prolog 
source program, is shown in Figure 2-13. Recallthat flattenCode/3 flattens 
a structure into a list. Choice points created for the first two clauses of 
flattenCode/3 are immediately cut by their first goals. Choice points are 
created to allow the third clause, the "catchall," to be attempted should the others 
fail. The compiler could avoid creating these choice points by optimizing across 
clause boundaries within a procedure. However, this code is being used as a 
simple example of a more pervasive problem which cannot always be recognized 
and removed by the compiler. 

When flattening a deeply nested structure, flattenCode/3 recurses 
around the second clause. The switch term selects label 70 because the first 
argument, XO, is a structure. The try_me_else instruction at 70 creates a 
choice point and attempts the second clause. The choice point is created in 
anticipation of failing through to the following clause, beginning with a 
trust me else instruction. The second clause at label 75 first matches the 
head and then executes a cut. The cut removes the last choice point created 
(by the try_me _else at label 70). Subsequent recursive goals follow. The 
final goal uses TRO by deallocating the second clause's environment before the 
recursive call (the execute instruction). 

Failing to match the head is an example of shallow backtracking. Figure 
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flattenCode/3: 

71: 
73: 

72: 

70: 
75: 

74: 
69: 

switch term 71,69,70 
try 3-;73 
retry 75 
trust 69 

try_me_else 3,72 
get_constant XO,void/O 
get_value X1,X2 
cut _strong 
proceed 

trust 69 

try_me_else 74 
get_structure XO, , , /2' 
unify_variable XO 
allocate 3 
unify variable Y2 
get_variable YO, X2 

cut 

put_variable Y1,X2 
call flattenCode/3 
put_value Y2,XO 
put_unsafe_value Y1,X1 
put_value YO,X2 
deallocate 
execute flattenCode/3 

trust me else fail 
get_1I'st- Xl 
unify_local_value XO 
unify_local_value X2 
proceed 

% flattenCode( 
% void, 
% Code, Code) .-
% ! . 

% flattenCode( 
% , ( 
% Seq1, 

% Seq2) , 
% Code, 
% CodeO) 
% ! , 
% flattenCode (Seq1, CodeO, 
% Code1 
% ) , 
% flattenCode(Seq2, 
% Code1, 
% Code 

% ) . 

% flattenCode(Instr, 
% [ 
% Instrl 
% Codel,Code) . 

Figure 2·13: Lcode Program Example: flattenCode/3 

ss 
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70: 
75: 

try_me_else 74 
get structure XO,' ,/2' 
trust me else fail 

% fails ... 

Figure 2-14: Instruction Trace of Head Failure: flattenCode/3 

70: try_me_else 74 
75: get_structure XO,' ,/2' 

get_variable YO,X2 
cut 

Figure 2-15: Instruction Trace of Head Success: flattenCode/3 

2-14 shows the instruction sequence compnsmg choice point creation and 
removal for head failure. Figure 2-15 shows a similar sequence for head success. 
The importance of these two traces is that they both create and remove a choice 
point. The failure sequence restores the state held in the choice point giving it a 
larger penalty than the successful sequence. Both, however, contribute equally to 
choice point write bandwidth - an overhead contributing only indirectly to 
program execution. 

Table 2-5 summarizes the Lcode instruction set. There are in addition 
several arithmetic instructions, not shown in the table. The operands are denoted 
as C - atom, integer or functor (constant), Xi - temporary variable (register 
specifier), Yi - permanent variable (offset in current environment), vi -
argument register or permanent variable, L - instruction address, and n - integer. 
The head and goal matching instructions are previously introduced as the get and 
put instructions in the Prolog CIF. The tag of a single get destination operand 
(or a single put source operand) is incorporated into the W AM opcode. In 
addition, all instructions are fixed length. get/put_list/ structure 
instruction operands are allocated individual unify instructions. The 
arithmetic, cut, branch, comparison, and escape Lcode instructions are not 
present in the W AM. Refer to Tick [84] for the complete Lcode semantics. 
Refer to Warren [96], Gabriel [30], or Fagin [24] for the W AM instruction 
semantics. 
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goal matching 
put_varlab1e Vl,Xl 
put_constant Xl,C 
put_nl1 Xl 

head matching 
get varlab1e Vl,Xl 
get:constant Xl,C 
get_nll Xl 
get_llst Xi 
get structure Xl,C 
get:value Vl,Xi 

structure matching 
unlfy varlab1e Vl 
unlfy-constant C 
unlfy:nll 
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put llst Xi 
put-structure Xl,C 
put-value Vl, Xi 
put:unsafe_va1ue Yl,Xl 

unify value Vi 
unlfy-1ocal value Vl 
unlfy:vold n 

clause control 
a110cate n 
dea110cate 
ca11 L 
execute L 
proceed 
escape n 

indexing procedure control 
branch n,Xl,L try n,L 
camp n,Vl,Vj retry L 
cond n,Vl trust L 
hash C,L try me e1se n,L 
jump L retry_me_dse L 
swltch te~ Lc,L1,Ls trust me e1se fal1 
swltch-constant n cut - - -
swltch-structure n cut strong 

- cutd L 
fall 

Table 2·S: Lcode Instruction Set 

Lcode Storage Management 

Throughout the Lcode system, design decisions were made with speed and 
simplicity as the most important considerations. The emulator is only used to 
analyze program execution and therefore user interface, error recovery, and ease 
of program development were minor or nonexistent considerations. Note that the 
specifics of Lcode data types, tags, storage areas and storage management, as 
defined below, do not accurately resemble a realistic Prolog implementation. 
Many details, necessary for such an implementation (e.g., garbage collection), 
are purposely missing to facilitate analysis of the features which are included. 
The Lcode system is used to emulate a number of alternative architecture 
attributes and therefore is representative of a range of Prolog architectures, e.g., 
the PLM and the W AM. 

The Lcode emulator manages six memory areas: code space, symbol table, 
heap, trail, stack and push down list (pdl). The code space contains the Lcode 
program object image. Assert and retract are not implemented, so this area is 
fixed. The symbol table holds the print·names of atoms, functors, procedures 
and top-level variables (i.e., variables in the query). The heap holds structures 
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integer 
nil 
atom 
functor 
ref 
unbound 
list 
structure 

MEMORY PERFORMANCE OF PROLOG ARCHITECTURES 

1<-- 4 bytes --> I 
I 2s-complement value 0111 
1000000001000000001000000001000001111 
1000000001 identifier I 1111 
I arity I identifier 1-----1111 
I long address ----- 001 
I self address 001 
I long address 011 
I long address 10 I 

Table 2-6: Lcode Data Object Formats 

and unsafe values and is dynamically managed as a stack. The stack holds 
environments and choice points. The pdl is used by general unification and 
~=/2, both of which are implemented as recursive functions. The emulator does 
not check for memory area overflows. No facilities for data area shifting, 
trimming or garbage collection are implemented. In addition, cut does not 
garbage-collect the trail. Maximum data area sizes may be specified as emulator 
input, and stay fixed during execution. 

A data object is a word (32 bits) composed of a variable length tag and a 
value. Lcode data objects are defined in Table 2-6. An identifier is an offset into 
the emulator's symbol table. Unification of atoms, for instance, is done by 
comparing identifiers. An Lcode linker has not been implemented, so that entire 
Lcode programs must be assembled together to allow proper identifier 
assignment. A long address is a full 30 bit address pointing to another data 
object. An unbound variable points to itself (a self address) to differentiate it 
from an indirect reference. 

Note that the Lcode architecture (like the W AM) is structure copying, i.e., 
unifying an unbound variable with a structure involves copying the entire 
structure in the heap. In addition, the Lcode emulator uses standard list coding, 
requiring two heap words per list cell. 

Lcode instructions are either one, two or three words long. Minimal 
encoding is de-emphasized to allow fast emulation. The first halfword of each 
instruction is an opcode. An opcode is the address of the C code emulating that 
instruction. This allows fast instruction dispatch but requires that the emulator 
kernel fit in the first 64 Kbytes of virtual memory. 

Arbitrarily large programs can be compiled and executed. This is 
implemented with both absolute and instruction relative addressing. To avoid a 
linkage phase, absolute addressing is actually implemented as base relative, 
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where the base is the first location of the program. Base relative addresses are a 
full 32 bits long and are used only by inter-procedural branches, i.e., call and 
execute. Instruction relative addresses are 16 bits and are used by all other 
branches, i.e., all intra-procedural branches. This distinction required the 
introduction of the jump instruction to implement disjunction, rather than with 
the execute instruction, as is done in the PLM compiler. Note that intra
procedural branch offsets for the PLM are only eight bits. 

Lcode choice points are composed of a fixed size bookkeeping area (seven 
words) and a variable size argument area (c.f., the PLM choice points which are 
fixed size of 15 words). Lcode environments are composed of a fixed size 
bookkeeping area (four words - c.f., the W AM with two words) and a variable 
size permanent variable area. Both choice points and environments remain 
statically fixed in size once they are created (c.f., the W AM, which trims 
environments) . 

Lcode Instruction Encoding 

As is previously mentioned, the Lcode instruction set is loosely encoded to 
make emulation efficient. It is of interest, however, to measure the instruction 
bandwidth of more tightly encoded versions of the instruction set. The Lcode 
emulator calculates the bandwidth of several encodings. All instruction 
bandwidth measurements presented in this book are calculated independently of 
the actual Lcode encoding by first tallying instruction counts, and then scaling 
the counts by appropriate instruction sizes. 

In this section two simple encodings are briefly described: word and byte 
boundary encodings. In Section 3.3.2, bit boundary encodings are introduced 
and instruction bandwidth measurements are presented for all the encodings. 
Word (byte) boundary encodings force each instruction to occupy an integral 
number of words (bytes). The Lcode instruction operand types are listed below. 
The operand sizes given are valid for word and byte boundary encodings only. 

1. immediate constant - four bytes encode all Prolog data objects: 
integers, atoms and functors. In addition, several instructions use 
small (one byte) immediate constants, e.g., the allocate operand 
specifying the number of permanent variables in the environment. 

2. temporary register specifier - four bits encodes 16 registers 
(c.f., PLM with eight registers). Extra procedure arguments can be 
collected by the compiler into the last argument. If more 
temporaries are needed during an arithmetic calculation, for 
instance, they can be allocated as permanent registers. 

3. permanent register specifier - eight bits encode 256 registers. 
This should be sufficient for most applications (note that Quintus 
Prolog [62] and PLM also have this restriction). 
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4. local (inter-procedure) branch target - both one and two byte 
offsets (from the program counter) are measured. PLM, for 
instance, uses one byte offsets. Warren suggests using two byte 
offsets [96]. 

5. global (procedure call) branch target - a two byte offset from a 
segment register is assumed. 

The Lcode formats are summarized in Table B-l in Appendix B. 

Split-Stack Architecture 

The split-stack model is a modification of the W AM model wherein 
environments and choice points are stored separately in an environment stack (E
stack) and choice point stack (B-stack). The Lcode emulator can optionally 
execute Prolog programs with the split-stack model. The main advantage of this 
model is an increase in the spatial locality of environment and choice point 
references. 

In Chapter 3, it is shown that after choice point references, environment 
references are the next largest contributor to the Prolog data bandwidth 
requirement. In Chapter 4, an E-stack buffer is investigated to reduce this 
bandwidth requirement, preferably a buffer which can hold the multiple 
environments at the top of the continuation chain. The buffer must hold only 
environments to avoid aliasing the choice point buffer. The split-stack model 
facilitates a directly addressable, wrap-around E-stack buffer much likl! the stack 
buffer previously described. As will be shown, an E-stack buffer of one half the 
size of a corresponding W AM model stack buffer will give similar reductions of 
environment traffic and effective memory access time. 

The split-stack model must retain information implicit in the single stack 
model, i.e., the position of the choice points with respect to environments. The 
key is to expand the B register into a register pair {B,C} [13]. B serves the 
function of the old B, linking the choice point chain together within the B-stack. 
C points into the E-stack to where the choice point "would have been" (in the 
single-stack model). More precisely, C is the address of the top of E-stack when 
the choice point was created. The top of E-stack is defined as the topmost valid 
entry (in the topmost valid environment) in the E-stack. 

The B pointer and choice point size entries in a choice point are now 
redundant because the B-stack is a true stack. Thus the size location can be 
reused to hold C. Note that the E pointer and environment size in an environment 
are not redundant because the E-stack is not a true stack, i.e., the current 
environment may not be at the top of stack. 

The current instruction semantics work for the split-stack model with minor 
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modifications for {B,C}. B represents not only the current choice point but also 
the top of the B-stack. Thus cuts naturally deallocate choice points from the B
stack and no "deep" choice points occur. E still points to the current 
environment, not the top of E-stack. The top of E-stack is defined as 

if (C > E) TOS = Ci else TOS = Ei 
When creating a new choice point, the state is pushed onto the B-stack and then 
C and B are updated: 

if (E ~ C) C = Ei 
B = B + sizeof(choice point)i 

A consequence of a true choice point stack is that cutting a choice point is 
permanent (this is not so with the single stack model, where an environment can 
"protect" a deep choice point). Thus, cuts in a nondeterminate clause cannot be 
permitted to cut out the clause's choice point if subsequent cuts in the clause are 
to work. There are two solutions to this problem: a lazy cut, described in Tick 
[82], or a compiler source-to-source transformation converting predicates with 

multiple cuts into a sequence of single cut predicates. For example, 

becomes 
p. bl,! ,b2, ! ,b3 . 

p. bl,! ,p' . 
p' : - b2, ! ,b3 . 

Recall that the W AM trail test is 
trail (A,HB,B) . A < HB 

The split-stack trail test is similar: 
trail (A,HB,B) .- A < HB 

A < B. 

A~C. 

2.3. Restricted AND-Parallel Prolog Architecture 

Exploitation of parallelism in logic programming languages is of great 
interest because sequential performance is limited. The two main approaches to 
exploiting parallelism in logic programming are committed-choice 
nondeterministic and don't-know nondeterministic languages. Committed-choice 
nondeterministic languages sacrifice backtracking to reduce the complexity of 
the abstract execution model and efficiently exploit parallelism. The three most 
prominent members of this language family are Concurrent Prolog [72], Parlog 
[16], and Guarded Horn Clauses [88]. Don't-know nondeterministic languages, 

e.g., Prolog, retain full backtracking capabilities. Many implementations use an 
extended version of Prolog, exploiting both AND and OR parallelism. Examples 
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are ANLW AM - an OR-Parallel Prolog architecture [11], and PW AM - a 
Restricted AND-Parallel (RAP) Prolog architecture [35]. 

As stressed in the previous derivation of the Prolog CIF, good memory 
referencing characteristics (e.g., high locality) are essential in a high performance 
architecture. In the next chapter, the Prolog CIF and the W AM are shown to 
have excellent memory referencing characteristics. In other words, the primary 
advantage of these architectures is their storage model. One would hypothesize 
that a parallel architecture based on this sequential architecture family would 
perform well if it exploited a large enough grain of parallelism to remain within 
the sequential storage model most of the time while executing. This is the 
seminal idea behind various parallel Prolog architectures such as ANL W AM and 
PWAM. 

The key notion in RAP-Prolog is the annotation of a program with 
conditional graph expressions (CGEs). A CGE consists of a condition followed 
by a conjunction of goals. CGEs can appear anywhere a conventional goal can 
appear in a clause, including nested within another CGE. The condition is a 
logical combination of checks on any of the variables appearing to the left of the 
CGE. The checks test independence and (stronger) groundness of sets of 
variables. These checks can be expensive operations. A full check in general 
requires traversal of all terms associated with the variables being tested; 
however, much cheaper checks can be used in return for a certain loss of 
parallelism. In addition, mode and type analysis performed by the compiler with 
the aid of user annotation can reduce (or eliminate altogether) the number of 
required checks. 

Figure 2-16 shows the isotree/2 example of Section 1.1 written in RAP
Prolog. Note that if subtrees are left uninstantiated, isotree/2 attempts to 
ensure isomorphism by binding. Suppose the user knows a priori that the first 
tree is always ground, but the second tree may have uninstantiated, possibly 
shared, subtrees. This information is indicated by the mode declaration 
i sotree (q, ?), similar to a DEC-I0 Prolog mode declaration. indep /2 is 
the check of the CGE containing both AND-parallel recursive goals. The checks 
ensure that the second argument shares no variables, allowing the goals to be 
executed in parallel. If the second argument was known to be ground 
(isotree (q, q» or contain no shared unbound variables (isotree (g, i) ) 
then no checks would be needed. 

At runtime, the conditions are evaluated to either true or false. During the 
execution of a CGE, if the conditions evaluate to true, the goals can be executed 
in parallel and are known as a parallel call. Otherwise the goals must be 
executed sequentially. A parallel goal is a goal invoked by a parallel call. 
Failure of a parallel goal cannot be affected by alternative executions of other 
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:- mode isotree(q, ?). 

isotree(void,void). 
isotree(tree(X,Leftl,Riqhtl), 

tree(X,Left2,Riqht2» '
(indep (Left2, Riqht2) I 
isotree(Leftl,Left2) & 
isotree(Riqhtl,Riqht2) 

) . 
isotree(tree(X,Leftl,Riqhtl), 

tree(X,Left2,Riqht2» . 
(indep(Left2,Riqht2) I 
isotree(Leftl,Riqht2) & 
isotree(Riqhtl,Left2) 

) . 
Figure 2-16: RAP-Prolog Program Example: isotree/2 
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parallel goals (because they are all independent), and so the entire CGE fails. 
Failure back into a parallel call, from subsequent sequential goals outside the 
CGE, causes all parallel goals to the right of the rightmost goal with remaining 
alternatives to be unwound and restarted. This allows generation of tuples of 
results in the same order as in a sequential execution. This policy is more 
complex to implement than others which don't guarantee sequential backtracking 
order; however, intelligent backtracking may be purposefully indicated by the 
user's goal ordering and so order must be preserved. Other optimizations exist 
for a determinate CGE which is followed by a cut. 

Note that the design of the PW AM architecture and memory hierarchy must 
account for the case when a parallel call spawns processes for all its conjunctive 
goals, and these goals are passed arguments from the parent. In addition, these 
arguments can be arbitrarily complex and contain hidden logical variables 
through which results will be bound by the child and passed back to the parent. 

PW AM is an extension of the W AM architecture. A fundamental design 
criterion of PW AM is fast sequential execution for cases where there is no 
available (AND) parallelism. To this end, CGE semantics are integrated into the 
W AM storage model. PW AM extends the W AM storage areas as summarized in 
Table 2-7 [36]. PWAM adds Parcall Frames and Markers to the WAM stack. 
These can be allocated on a choice point stack in a split PW AM architecture. 
PW AM also adds Goal Frames and Messages, in their own separate storage 
areas. Each PW AM process references it own stack, heap, trail and pdl. The 
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Frame In~e Location InWAM? Races? Locality 
Env/Bookkeeping Stack Yes No Local 
EnvlPermanents Stack Yes No! Global 
Choice Points Stack Yes No Local 
Heap Heap Yes No! Global 
Trail entries Trail Yes No Local 
PDL entries PDL Yes No Local 
Parcallliocal Stack No No Local2 

Parcalllgiobal Stack No N04 Globa13 
Markers5 Stack No No Local 
Goal Frames Goal Stack No Yes6 Global 
Messages Mess. Buf. No Yes7 Global 

Table 2-7: PW AM Storage Model (notes 1-7 in text) 

Goal Stack and Message Buffer are shared by all processes executing on a single 
processor (in the following chapters, references to the Goal Stack and Message 
Buffer are called the communication references of the PW AM model). For a 
complete discussion of the PW AM storage areas, see Hermenegildo [35, 36, 37]. 
Table 2-7 is annotated with the following notes. 

1. The model guarantees that only one process can write each of these 
variables (goal independence parallelism). Several (child) 
processes can read them, but the parent process will not read them 
until all children have succeeded. Child processes cannot read the 
variables until these processes are scheduled. 

2. The local part of the Parcall Frame contains bookkeeping 
information for parallel processes. 

3. The global part of the Parcall Frame includes the number of goals 
still to schedule, the number of goals to wait on, and the process 
slots (one per goal in the CGE). 

4. Although the process slots are global, they don't need to be locked 
- only a child process can write them and the only time the slots 
may be read by the parent is after the child has completely 
succeeded. Thus the situation in the Parcall frame is similar to that 
in environments: 

local part of Parcall Frame == bookkeeping part of environment 
process slots == permanent variables 

The other two global entries (the number of parallel goals to wait 
on and the number of parallel goals still to schedule) are 
semaphores and therefore require an atomic read-modify-write 
operation to avoid races. 
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5. For the purposes of memory referencing, the Input Markers, Wait 
Markers, and Local Goal Markers are identical. They are also 
similar to choice points, except that they do not save the argument 
registers. 

6. There can be races while stealing a goal from the Goal Stack 
(several processes may simultaneously try to do so and the action 
entails several memory references). Thus, a lock is needed for 
controlling access to each processor's Goal Stack. 

7. Several processes may simultaneously attempt to write into the 
Message Buffer, so this needs to be locked; however, messages 
represent a small percentage of references, since they are used only 
during deep and "intelligent" backtracking across processors. 

2.4. Summary 
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Several instruction set architectures for Prolog are introduced in this chapter. 
Initially, a family of Prolog canonical interpretive forms (ClFs) is defined from 
the semantics of Prolog with some ideas borrowed from existing Prolog 
architectures. The ClFs define metrics that limit the execution performance of 
Prolog - measurements of these metrics are presented in the next chapter. 
Three ClFs are described: naive, traditional, and register-based. The naive and 
traditional models are based on procedural language ClFs. Whereas the naive 
model assumes a simple host, the traditional model assumes a host with a stack 
buffer of unlimited size. The register-based CIF constrains the traditional CIF, 
assuming a host with only a small register set. 

The progression from one Prolog CIF to the next represents a refinement of 
the ideas of canonical architectures developed by Flynn and Hoevel [27]. The 
naive architecture directly corresponds to the Prolog language, to the extreme 
degree that the entire name space is mapped into a single memory space. The 
observation is made that references to local identifiers and arguments within a 
scope can be captured for reuse by a hardware buffer. The traditional 
architecture maps stack references into such a hardware stack buffer (of 
unlimited size) in the underlying host. Such a model is "traditional" in the sense 
that procedural CIFs make a similar host assumption. This assumption is 
possibly more warranted for procedural languages, which make frequent 
procedure stack references, than for Prolog, where only 75% of the data 
references are to the stack. Prolog makes frequent use of the heap also, for 
dynamic creation and unification of data structures. The register-based CIF is a 
further refinement of the traditional model, wherein the assumption of an 
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underlying stack buffer is removed and replaced with a register set. These 
changes represent a relaxation of the correspondence between the CIF and 
Prolog, and a divergence from the traditional view of canonical architectures. 
The constraints imposed, however, offer higher performance for direct 
correspondence architectures (DCAs), i.e., Prolog architectures that can be 
implemented on realistic hosts. A DCA based on the traditional CIF is the 
Prolog-tO abstract machine. A DCA based on the register-based CIF is the 
Warren Abstract Machine (W AM). These two architectures, in addition to 
PW AM, a Restricted AND-Parallel Prolog extension of the W AM, are described 
in this chapter. 

The presentation given here of the Prolog-lO and W AM models constitute a 
conventional or evolutionary approach to Prolog architecture design. These 
environment stacking architectures represent the two most popular Prolog 
implementations. A comparison of the high-level memory-referencing 
characteristics of the two is given. The results suggest that the W AM makes 
fewer memory references in determinate programs, Prolog-lO makes fewer 
memory references in shallow nondeterminate programs, and both make 
approximately equal numbers of r·:!ferences in deeply nondeterminate programs. 
Thus the W AM achieves its goal of optimizing the execution of determinate code 
(with respect to Prolog-lO), at the cost of slower nondeterminate execution. 
What was not known at the time of the design of the W AM, however, was the 
extent of shallow nondeterminate execution in seemingly determinate programs. 
As is shown in the next chapter, realistic Prolog programs, although largely 
determinate, display much shallow backtracking when translated with a simple 
compiler. The W AM, however, has advantages over Prolog-10, such as higher 
locality resulting in more efficient use of storage. In realistic implementations, 
these space saving advantages can outweigh the speed disadvantages caused by 
inefficiencies in backtracking. 

A final sequential environment-stacking architecture, called Lcode, is 
described in this chapter. Lcode is the actual instruction set emulated and 
measured for this book. Lcode is closely related to the W AM, and the 
differences between the two do not significantly affect the measurements 
presented here. All sequential architectures measured, including the Prolog CIFs 
and split-stack architectures, are modeled with variations of the Lcode compiler 
and emulator. The parallel Prolog architecture, PW AM, is modeled with a 
separate compiler and emulator. These tools are further described in the next 
chapter. 

A high-level description of the PW AM model is also given in this chapter. 
PW AM is chosen for study because it is closely related to the W AM, allowing a 
fair comparison of the overheads incurred by the exploitation of parallelism. In 
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addition, it appears promising that the PW AM model can be extended for OR
parallelism, e.g., with the mechanisms introduced in ANLW AM [11]. 
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3 Prolog Architecture Measurements 

In this chapter, a methodology is described for measuring the dynamic 
memory performance of Prolog programs compiled into the instruction set 
architectures described in the previous chapter. The benchmarks measured with 
this experimental approach are then described. Next, high-level statistical 
characterizations of Prolog's memory request behavior are presented. From 
these high-level statistics, problem areas and performance bottlenecks are noted 
which give credence to various local memory models. In the next chapter, these 
memory models are described and simulation measurements are presented and 
analyzed. 

Several important results are presented in this chapter. Shallow backtracking 
is shown to dominate the Prolog data bandwidth requirement. This is shown by 
analysis of choice point referencing characteristics, as well as by measurements 
of the effectiveness of "ideal" indexing in the Prolog CIF. In addition, the W AM 
stack is shown to exhibit high locality of reference, indicating that various types 
of stack buffers can effectively reduce Prolog's bandwidth requirement. It is 
shown, however, that the heap exhibits little locality, and therefore caches will 
likely be necessary to achieve truly high performance execution. Finally, it is 
shown that PW AM sacrifices little of the W AM's memory-referencing efficiency 
to achieve parallelism. 
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3.1. Methodology 

Memory reference behavior is measured with address-trace-driven memory 
simulators. Traces are produced with an Lcode emulator that executes object 
files produced by an Lcode assembler. The assembler translates Prolog compiler 
output. These tools are summarized in Table 3-1 and illustrated in Figure 3-1. 
The tools run on the Stanford Emulation Laboratory V AX-I 1/750, under Unix8 

4.3 BSD. 

tool 
compiler 
assembler 
emulator 
simulators 

input 
Prolog source 
Lcode assembler 
binary object 
trace file 

output 
Lcode assembler 
binary object 
trace file 
statistics 

implementation 
Prolog 
LEXlYACC 
C 
C 

Table 3-1: Stanford Emulation Laboratory Prolog Tools 

3.1.1. Compiler 

The compiler is a modified version of the DC Berkeley PLM compiler [89]. 
The compiler, written in Prolog, is about 2900 source lines. The modifications, 
listed below, were introduced for another study [83], but do not significantly 
affect the benchmarks measured here. Refer to Tick [83] for a complete 
description of the optimizations . 

• removal of cdr-coding 
cdr-coding was not deemed a significant attribute of the architecture 
for the benchmarks considered. 

• static-sized environments 
environment trimming was removed to simplify the architecture . 

• increased number of registers 
16 registers were implemented as opposed to eight in the PLM. Of 
the benchmarks considered in this book, only CHAT is affected by 
the increase in registers, although not significantly [54]. Since 
variable-sized choice points are used, as in the W AM, increasing the 
number of registers does not increase choice point overheads, as in 
thePLM. 

8Unix is a Trademark of Bell Laboratories. 
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Prolog 
source , -

PLM compiler/ 
Stanford optimizer 

t 

I assembler I 
t 

I emulator I • 
trace 
file 

l'--• • • 
high-level stack cache memory buffer 000 

simulator simulator 
simulator 

• • • Figure 3·1: Prolog Memory Performance Measurement Methodology 

• arithmetic instructions 
arithmetic and other primitive operations, e.g., var/l, have been 
lifted from built-in predicates to the instruction set. 

• conditional branches 
a peephole optimization was introduced wherein under certain 
circumstances, simple built-in conditionals, e.g., >/2, can be moved 
up into the head of a clause. If a conditional can be moved up in 
front of choice point creation, it is replaced with a conditional 
branch. Subsequently, if the choice point creation meets a cut, both 
are removed. 

• incremental indexing 
this type of indexing is a slight modification of the method outlined 
by Warren [96], whereby the number of branches is reduced. One 

71 



www.manaraa.com

72 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES 

measure of the effectiveness of an indexing method is the ratio of 
try me else to try indexing instructions. try is an 
unconditional branch, whereas try me else is not. Without 
incremental indexing, the ratio is about 3:1 [21], whereas with 
incremental indexing, this ratio is about 25: 1. 

3.1.2. Assembler 

The assembler is written in C around a LEXlYACC [47, 40] parser of about 
1000 source lines. The function of the assembler is to transform the symbolic 
intermediate code generated by the compiler into an object image which is easily 
interpreted by the emulator. The advantage of having the emulator read an object 
image is the significantly reduced time in loading executable programs. 

3.1.3. Emulator 

The Prolog emulator, used to measure the memory performance of 
benchmark programs, is implemented in C. Arbitrarily large programs can be 
emulated (within the UNIX address space limits). The emulator kernel is about 
2000 source lines with another 3000 source lines of support code. The emulator 
kernel consists of a single large function wherein each intermediate level 
instruction is implemented. Primitive procedures not transformed by the 
compiler are dynamically interpreted in C. Notably, input primitives are 
implemented in LEXlY ACC. A side effect of executing the program is the 
production of a memory reference trace file. Both data and instruction references 
can be traced. An emulator option is procedure profiling, useful in determining 
Prolog program hot spots. Memory references made by primitive procedures are 
counted as other references; however, these primitives are not restricted to using 
the state registers of the W AM model. The assumption is that these primitives 
would be microcoded and the required temporary registers would be available. 
The emulator also has limited debugging capabilities. The code space can be 
displayed through a disassembler and a single break point can be set. Memory 
areas and terms can be displayed symbolically. The emulator (with tracing off) 
runs at 3900 LIPS for the "naive reverse" benchmark. 

The emulator has alternative definitions for certain operations, allowing 
emulation of Lcode, the Prolog CIFs (including the split-stack model and ideal 
indexing), and shadow register architectures. W AM instructions are emulated in 
close correspondence to the detailed semantics given by Warren [96]. Common 
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simulator 
choice point buffer 
stack buffer 
E-stack buffer 
copyback cache 
"smart" cache 
write-through cache 
hybrid cache 
instruction buffer 
multiprocessor caches 

Table 3-2: 

references captured 
data (choice points) 
data (choice points and environments) 
data (environments) 
data and/or instructions 
data 
data 
data 
instructions 
data 

Local Memory Simulators 
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Lcode operations which lend themselves to alternative semantics include general 
unification, cut, indexing instructions, and built-ins. The emulator 
implementations of these operations are described in detail in Tick [84]. 

3.1.4. Simulators 

The memory simulators are C programs that simulate various parameterized 
local memories driven by trace references. The simulators are summarized in 
Table 3-2 and described in detail in the next chapters. Note that all memory 
simulations were conducted with a "cold start," i.e., measurements were taken 
beginning with the first instruction of each benchmark program, assuming the 
local memory was initially empty. 

3.2. Benchmarks 

The four Prolog benchmark programs studied in this book are the CHAT 
English language parser, the Berkeley PLM Prolog compiler, the Quintus Prolog 
compiler (QCl), and the Intuitionistic Logic Interpreter (ILl). Two compilers 
were included because they characterize different programming styles, as 
described below. CHAT is a database query system written by D. H. D. Warren 
and L. Periera [95]. Only the front-end parser is used as a benchmark here. The 
PLM benchmark (not to be confused with the PLM machine) is a slightly 
modified version of the PLM Prolog compiler, written by P. Van Roy. This 
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compiler does clause and procedure (indexing) compilation. The QCl 
benchmark is the Quintus Computer Systems Inc. clause compiler, written by 
Warren. Neither compiler benchmark generates code - they stop after 
producing an internal form of W AM code, and both are tested with different 
input data. ILl, the Intuitional Logic Interpreter, is a natural deduction theorem 
prover written by S. Haridi. 

CHAT, originally written in DEC-lO Prolog, has a simple, pure style, being 
derived from grammar rules (see [78, p. 256]). PLM, originally written in C
Prolog, has the most complex style, using disjunction and conditionals 
extensively. PLM originally included code with side effects: an intelligent 
backtracking register allocator and a garbage collector. The register allocator 
was retained, by implementing a simplified record primitive, because it has a 
significant effect on the measurements. The garbage collector was removed. 
QCl, originally written in Quintus Prolog, has a cleaner style than PLM. QCl 
was written to take full advantage of indexing whereas PLM was not. ILl, 
originally written in IBM-370 Prolog, is the shortest program of the set, being an 
interpreter. It is pure code, relying on Prolog unification and call to do meta
level reduction. 

With only superficial knowledge of the programs, it was expected that 
CHAT would display the characteristics of a highly nondeterministic program: 
much backtracking, using choice points and writing environments which are 
never read because of failure. PLM and QCl were expected to display 
characteristics of highly deterministic code: little deep backtracking and more use 
of the heap. ILl was expected to display characteristics of a meta-level 
interpreter: much heap and pdl usage. Not all of these predictions are accurate, 
as is discussed in the following sections. 

The benchmarks' characteristics are summarized in Table 3-3. The ratios are 
approximate, e.g., clauses/procedure is calculated as the total number of clauses 
divided by the total number of procedures. The mean ratios and all mean 
statistics presented in this thesis are calculated by weighing each benchmark 
equally. Static measures give an indication of program size, complexity, and 
consistency. Matsumoto [50] studied 15 large Prolog benchmarks and found 
similar static characteristics. 

Dynamic measures give high-level execution characteristics, e.g., data and 
instruction references per instruction. A reference is a 32 bit word accessed 
from/to memory. Register-to-register transfers are not considered references. 
Instruction references are calculated assuming byte encoded formats (see Section 
3.3.2). In the queueing models of subsequent chapters, the statistic 
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nrOl:ram CHAT PLM QCl ILl mean 
static 
source lines 850 1238 1040 316 
procedures 157 139 133 51 
clauses 500 383 576 141 
Lcode instructions 6439 8694 8269 4478 
clauses/procedure 3.18 2.76 4.33 2.76 3.25 
instructions/clause 12.9 22.7 14.4 31.7 20.4 
instructions/procedure 41.5 62.5 62.2 87.8 63.5 

dynamic 
procedure invocations 47677 36442 41858 17870 
Lcode instructions 587024 616053 674537 283750 
instructions/invocation 12.3 16.9 16.1 15.9 
data references 1347671 1530648 1426098 674013 
instruction references 430715 376236 499043 178908 
data ref/instr ref 3.13 4.07 2.86 3.77 3.46 
data ref/instr (ud) 2.30 2.48 2.11 2.38 2.32 
instr ref/instr (ui) 0.734 0.611 0.740 0.631 0.679 

Table 3-3: Summary of Prolog Benchmarks' Characteristics 

U = 3.0 mean references per W AM instruction9 

is frequently used. U = u r + Uw = '\)d + '\)i corresponding to reads and writes per 
instruction and data and instruction references per instruction. Huck [39J reports 
means of 0.524 data words referenced per instruction and 0.837 instruction words 
referenced per instruction for FORTRAN on the IBMl370. For PascaVVS on the 
IBMl370, he reports a mean of 0.84 data words referenced per instruction. For 
FORTRAN on the VAX 111780, he reports a mean of 1.31 instruction words 
referenced per instruction. These results confirm that the W AM instruction set is 
more potent and more tightly encoded than a conventional instruction set. 

!Inu-oughout the remainder of the book, conclusions drawn about the "W AM" architecture 
are based on measurements taken of the Lcode architecture, a close variant of the W AM, 
described in Section 2.2.4. 
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3.3. W AM Referencing Characteristics 

3.3.1. Data Referencing 

Memory use statistics are now presented for the benchmarks, assuming a 
monolithic memory of sufficient size to contain the entire stack, heap, trail, pdl, 
and code space of the Prolog machine model. Table 3-4 shows the maximum 
dynamic extent of each data area. The PLM garbage collection facility was 
turned off, accounting for the runaway heap. The other programs do not have 
this problem because they do not create large structures (recall QCl is a clause 
compiler). As hypothesized, ILl makes significant use of the heap - the heap 
grows about three times larger than the stack. Notice that general unification, 
which uses the pdl as a call stack (with three word frames) does not deeply 
recurse for any of these benchmarks. 

benchmark stack heaR trail Rdl 
CHAT 1845 882 258 6 
PLM 1577 20013 2628 6 
QCl 1571 2675 590 6 
ILl 423 1263 84 3 

Table 3-4: Runtime Data Areas in Words 

Table 3-5 shows memory data reference statistics broken down by area and 
by type. The stack references are categorized as choice point (cp) or 
environment (env). On average the benchmarks do 13% heap referencing and 
very little trail and pdl referencing. Read to write ratios differ significantly 
among areas. Heap references are about 2:1 reads to writes, except for CHAT 
which does the least heap referencing. CHAT does more heap writes than reads, 
attributed to deep backtracking. Choice point references are consistently about 
1: 1 reads to writes, indicating that most choice points are restored at least once. 
Environment references are about 1:2 reads to writes except for QC1, which has 
a closer ratio. These ratios indicate that most environments are allocated and 
never read because of failure. 

ILl shows the greatest percentage of heap referencing, as expected of an 
interpreter. As a result of shallow backtracking, PLM shows the greatest 
percentage of choice point referencing, as expected of a program written without 
indexing in mind. CHAT shows the greatest percentage of trail referencing, by a 
wide margin, as expected of a nondeterminate program. Interestingly, CHAT 
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area read % write % total % 
cp 348191 56.4 268918 43.6 617109 45.8 
env 132616 35.2 244130 64.8 376746 28.0 
heap 109909 45.7 130796 54.3 240705 17.8 
trail 51082 50.0 51082 50.0 102164 7.6 
pdl 5451 49.8 5496 50.2 10947 0.8 
total 647249 48.0 700422 52.0 1347671 100.0 

CHAT Data Referencing Profile 

area read % write % total % 
cp 494678 53.6 428111 46.4 922789 60.3 
env 92185 34.7 173151 65.3 265336 17.3 
heap 202019 69.5 88755 30.5 290774 19.0 
trail 14151 50.0 14156 50.0 28307 1.9 
pdl 9669 41.2 13773 58.8 23442 U 
total 812702 53.1 717946 46.9 1530648 100.0 

PLM Data Referencing Profile 

area read % write % total % 
cp 413119 56.8 314556 43.2 727675 51.0 
env 150061 42.4 203864 57.6 353925 24.8 
heap 184016 65.4 97166 34.6 281182 19.7 
trail 22685 50.0 22685 50.0 45370 3.2 
pdl 8859 49.4 9087 50.6 17946 U 
total 778740 54.6 647358 45.4 14260982 100.0 

QCl Data Referencing Profile 

area read % write % total % 
cp 215406 58.9 150382 41.1 365788 54.3 
env 58638 39.4 90062 60.6 148700 22.1 
heap 90146 63.6 51602 36.4 141748 21.0 
trail 4568 49.8 4599 50.2 9167 1.3 
pdl 4305 50.0 4305 50.0 8610 U 
total 373063 55.3 300950 44.7 674013 100.0 

ILl Data Referencing Profile 

Table 3-5: Data Referencing Characteristics of Benchmarks 
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Figure 3-2: Data References By Area 

shows the least percentage of choice point referencing, indicating that even for 
well-written determinate programs, such as QCl, shallow backtracking 
dominates Prolog referencing characteristics. 

Note that the environment allocate instruction, as implemented in the 
Lcode emulator, writes four words of bookkeeping information. Warren claims 
this can be reduced to two words [96] at the cost of impacting other instructions; 
however, four words of bookkeeping information is more appropriate for 
modeling real systems (e.g., PLM and PSI-II). The data in Table 3-5 are 
summarized in Figure 3-2, which shows the data areas by percentage for the 
mean of all benchmarks. 

Approximately 47% of Lcode data references are writes. Huck [39] reports 
that both IBMl370 and V AX FORTRAN programs display approximately 18% 
data writes. Mulder [55] reports approximately 25% data writes for Pascal 
programs, independent of architecture. The increased Lcode write traffic is 
attributed to setting up for backtracking, failure and structure copying. The high 
percentage of choice point writes is due to the method used to implement 
backtracking. As mentioned above, the high percentage of environment writes is 
an indirect result of failure. The high percentage of heap writes is caused by the 
policy of structure copying. 

The statistics collected by the high-level memory simulator are listed below. 
For each of these statistics, frequency distributions are shown for each 
benchmark as well as the average of the benchmarks. Note that the total area 
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statistic area mean 95%t 
object size cp 11.0 words 13 

env 9.3 15 
read depth cp 10.8 30 

env 22.1 64 
heaQ 345 >1200 

write depth cp 5.0 10 
env 9.7 29 
heaQ 86.8 >120 

total depth cp 8.2 21 
env 14.2 40 
heaQ 261.5 >1200 

reset depth cp 39.6 55 
env 17.7 75 
heap 17.9 50 

t refers to 95% quantile 

Table 3·6: Summary of High·level Prolog Memory Statistics 

under each distribution is one. The mean and 95% quantile of the mean 
distributions are summarized in Table 3·6. The area under each distribution to 
the left of the 95% quantile sums to 0.95 . 

• object size 
• choice point size - A choice point consists of an entry 

indicating its size, entries corresponding to the values of six 
state registers, and the parameters being passed, taken from 
the temporary registers. Thus the minimum choice point size 
is seven words, corresponding to a procedure with no 
arguments. Choice point size is sampled for each choice point 
reference. 

• environment size - An environment consists of an entry 
indicating its size and entries corresponding to the values of 
three state registers and the clause's permanent variables. 
Thus the minimum environment size is four words, 
corresponding to a procedure with no permanent variables. 
Environment size is sampled for each reference to the current 
environment. The sizes of deep environments referenced 
during dereferencing are not counted . 

• reference depth - Note that this statistic is measured for read, 
write, and total references . 

• choice point depth - This statistic is sampled for each 
choice point reference. It is the distance from the reference to 
the top of stack. Reference depths of less than seven words 
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are guaranteed to reference a choice point on the top of stack. 
The read depth indicates the type of backtracking because 
most choice point read references are generated during 
procedure failure. Shallow backtracking is evident when the 
choice point read depth is small. Large read depths imply 
deep backtracking. 

• environment depth - This statistic is sampled for each 
environment reference. It is the distance from the reference to 
the top of stack. Reference depths of less than four words are 
guaranteed to reference an environment on the top of stack. 
Environment depth indicates the proportion of references to 
deep environments, i.e., environments hidden by choice 
points. 

• heap depth - Sampled for each heap reference, this is the 
distance from the reference to the top of heap. Heap depth 
indicates the locality of heap references . 

• reset depth 
• choice point reset depth - This statistic is sampled for each 

instruction which resets the current choice point. It is the 
distance from the top of stack after resetting the choice point, 
to the previous top of stack. Recall that the top of stack is 
defined as the topmost environment or choice point. 
Deallocating choice points mayor may not affect the top of 
stack. This statistic is a measure of stack locality and type of 
backtracking. Large reset depths indicate deep backtracking. 
Zero reset depth often corresponds to cuts. 

• environment reset depth - This statistic is sampled for each 
instruction which resets the current environment, namely 
deallocate and fail. It is the distance from the top of 
stack after resetting the environment, to the previous top of 
stack. A large reset depth signifies that a series of 
environments has been popped from the stack, i.e., nested 
determinate procedure calls have terminated (either 
successfully or otherwise). Zero reset depth signifies 
termination of a nondeterminate procedure call, i.e., one that 
left at least one choice point on the stack. 

• heap reset depth - This statistic is sampled for each failure. 
It is the distance from the top of heap after failure to the 
previous top of heap. Recall that during failure, the heap 
pointer, H, is reset to the heap backtrack pointer, HB. This 
statistic indicates the efficiency of this automatic type of 
garbage collection. Zero reset depth indicates that no heap 
space has been reclaimed. 

• deference chain length - This statistic is sampled for each 
dereference operation executed by an instruction or built-in 
procedure. Recall that the Lcode architecture may bind a variable to 
an object by creating a pointer from the variable to the object. 
Binding a variable to another variable may result in a double pointer 
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chain and so forth. The dereference chain length is the number of 
memory references needed to fully dereference a variable. Zero 
length indicates that the variable is bound to an immediate value. 

81 

Figures 3-3 and 3-4 show distributions of stack object size. The maximum 
size choice point is 21 words, generated for the nondeterminate procedure with 
the greatest number of arguments. The mean size is 11.0 words, and so a 
nondeterminate procedure contains an average of 4.0 arguments. The 95% 
quantile is 13 words. 98.0% of all dynamically created choice points are less 
than 16 words long (hold fewer than nine arguments). The PLM architecture 
constrains choice points to be fixed at 15 words - this upper bound appears to 
be a reasonable choice. CHAT procedures have more arguments on the average 
than the other benchmarks because of the method of translation from grammar 
rules to simple clauses. 

The maximum size environment is 24 words, generated for the procedure 
with the greatest number of permanent variables. The mean size is 9.3 words, 
and so an environment contains an average of 5.3 permanent variables. The 95% 
quantile is 15 words. The statistics indicate that the four bookkeeping words per 
environment occupy 43% of the environment on average. A 43% overhead is 
extremely high and skews the read:write ratio for environment references. The 
ratio is skewed because the overhead entries are always written in the 
allocate instruction, whereas the number of subsequent environment 
references may be reduced by failure. CHAT procedures have more permanent 
variables on the average than the other benchmarks because of the complexity of 
the grammar rules. 

Figure 3-5 shows the mean choice point reference depth distributions broken 
down into read and write distributions. Most references are made near the top of 
stack. Depths 0-6, referring to a choice point at the top of stack, are unevenly 
distributed because this information is not used uniformly. For instance most 
writes are made at a depth of six because retry instructions overwrite the P 
pointer saved in entry seven of the CUITent choice point. The maximum read 
depth is greater than 120 words and the long read depth tail significantly 
influences the mean distribution. Whereas the mean write depth is 5.0 words, the 
mean read depth is 10.8 words. The mean choice point reference depth is 8.2 
words with 95% quantile at 21 words. 

Figure 3-6 shows the mean environment reference depth distributions. The 
mean depth is 14.2 words. More significant is a 95% quantile of 40 words 
indicating a long tail due to referencing deep environments. Of the benchmarks 
measured, CHAT displays the longest tail. The maximum depths of all the 
benchmarks exceed 120 words. The split-stack model was proposed as a partial 
solution to this problem. 
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Figure 3-3: Choice Point Size Frequency Distributions (words) 
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read write total 
mean 95%1 mean 95% mean 95% 

CHAT 74.2 350 5.6 21 36.2 210 
PLM 984.6 >1200 291.9 >120 772.8 >1200 
QCl 259.5 900 43.3 >120 184.4 800 
ILl 62.0 430 6.3 14 41.4 160 

t refers to 95% quantile 

Table 3·7: Heap Reference Depth Statistics (in words) 

An important statistIc of a conventional architecture is call depth 
distribution, i.e., the number of nested procedures entered before one is exited. 
Call depth indicates the locality of the activation stack, possibly justifying a 
hardware stack buffer of the type discussed in the next chapter. For Prolog, call 
depth is not an accurate statistic because the environment stack (with or without 
choice points) is not a true stack. In a true stack, the current scope is always 
represented by the top frame in the stack. In Prolog, the current scope may be 
represented by an environment buried in the stack because choice points created 
after that environment freeze the stack. When a procedure call is made, the 
caller's environment is not necessarily adjacent to the callee's environment (at 
the top of stack). In addition, last call optimization can cause the caller's 
environment to be replaced by the callee's environment. These two effects 
lessen the usefulness of the call depth statistic. 

The stack reference depth distributions given in Figures 3·5 and 3·6, 
however, give a more general statistic useful for Prolog. These distributions 
indicate that a small hardware stack buffer can capture much of the locality of 
choice point and (less of) environment references. These statistics indicate that a 
single choice point buffer will capture more references than any other buffer of 
comparable cost. 

Table 3-7 shows the mean and 95% quantile of the heap reference depth 
distributions of the individual benchmarks, broken down by read, write, and total 
references. Table 3-6 gives the average statistics across the benchmarks; 
however, these and the mean distributions are not accurate because, as seen in 
Table 3-7, the variance is very high. The heap referencing distributions have 
long tails. PLM has extreme behavior with respect to the other benchmarks (see 
Figure 3-4 also), partially because the specialized PLM garbage collection 
facility was removed. The write depths are shallow because most heap writes 
occur during structure creation, at the top of heap. Reads, however, often occur 
deep in the heap, during unification of passed structures. The distribution 
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statistics suggest that the high spatial locality exhibited by writes can be 
exploited by local memories that capture the top of heap. The write distribution 
statistics indicate that a "smart" memory, which does not continually prefetch 
the top portion of the heap (because it will be overwritten), can significantly 
reduce heap traffic. 

Figure 3-7 shows the choice point reset depth distributions. The mean is 
39.6 words with 95% quantile at 55 words. The maximum reset depth is greater 
than 120 words. CHAT differs from the other benchmarks because it has no cuts 
and therefore no zero depths. Figure 3-8 shows the environmen~ reset depth 
distributions. The mean is 17.7 words with 95% quantile at 75 words. The 
maximum reset depth is greater than 120 words. All these benchmarks have 
approximately equal zero reset depths. This indicates the prevalence of shallow 
choice points on the stack, even for supposed determinate programs, such as QC1 
(which, in fact, has the highest mean reset depth of 21.5 words). 

Figure 3-9 shows the heap reset depth distributions. The mean is 17.9 words 
with 95% quantile at 50 words. Heap reset depth indicates the amount of heap 
space automatically reclaimed during backtracking. On average, resetting the 
heap cleans up only a small portion of the heap. Figure 3-9 indicates however 
that this behavior is highly program dependent - ILl and CHAT display 
instances of larger reclamations. In comparison, consider that explicit Prolog 
garbage collection reclaims about 50% of the heap on average [l00]. This 
statistic, however, is also highly program dependent. 

Figure 3-10 shows the dereference chain length distribution for the combined 
benchmarks. The mean is 0.32 references. The PLM benchmark has a procedure 
that unravels terms in the input source program. This procedure can produce 
arbitrarily long dereference chains, e.g., unraveling a term nested ten levels deep 
produces a chain of length ten. Since deeply nested Prolog source terms are rare, 
this benchmark rarely produces long dereference chains. These results indicate 
that optimizations to further shorten pointer chains are not needed. 

3.3.2. Instruction Referencing 

Instruction bandwidth requirements are measured in several different ways in 
this section, clarifying design tradeoffs between encoding efficiency and 
decoding complexity. An instruction is encoded into an opcode, format, and 
operand(s). The opcode and format are not clearly separated in the Lcode 
instruction set because there is little orthogonality, i.e., reuse of the same format 
among different opcodes. Instructions can be encoded with a fixed (e.g., 
IBMl370) or variable (e.g., V AXIl I) number of operands. In addition, the 
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Figure 3·10: Dereference Chain Length Distribution 

instruction may be aligned on word, halfword, byte, or bit boundaries. These 
storage units are called instruction syllables. Bit alignment allows tight encoding 
using log2 encoding schemes as in ADEPT [91]. The size and placement of 
immediate constants and branch offsets and addresses also offer variability of 

design. These parameters are difficult to design without analysis of many large 
programs, where the mean and peak numbers of interned constants (in the 
symbol table) and accurate branch distance distributions can be calculated. 
Because only a small set of benchmarks is analyzed in this book, no definitive 
statement is made concerning the "best" instruction formats. Instead, several 
alternatives are presented. 

Table B·l in Appendix B summarizes the sizes of each Lcode instruction. In 
this table, a word and byte count is given for each instruction. Instructions with 
two byte (or word) counts indicate local branch target operand(s) which can be 
encoded as either one or two byte offsets. Figure 3·11 shows the distribution of 
instruction size (assuming one byte offsets) for all instructions referenced during 
execution of the benchmarks. The mean distribution is calculated weighing each 
benchmark equally. The mean of the distribution is 2.6 bytes. Huck [39] reports 
mean instruction lengths for typical FORTRAN programs of 3.35 bytes on an 
IBMl370, and 5.23 bytes on a VAX 111780. 

Instruction bandwidth is measured for the benchmarks in the following seven 
ways. 

1. word boundaries, halfword offset (from P) for local branch target 
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Figure 3-11: Instruction Format Distribution 

2. word boundaries, byte offset 

3. byte boundaries, halfword offset 

4. byte boundaries, 8/16 offset 

5. byte boundaries, byte offset 

6. bit boundaries, 8/16 offset 

7. bit boundaries, 8/16 offset, log2 encoding of permanent register 
specifiers (these specifiers can be decoded because the fixed size of 
each environment is known). 

The local branch offset in these encodings is either a byte, halfword, or "8/16" (a 
combination of both). The 8/16 encoding uses whichever offset is appropriate 
for an individual instruction. Thus byte offset encoding is somewhat optimistic 
and halfword offset encoding is somewhat pessimistic. Table 3-8 lists the 
relative instruction reference counts of the seven encoding schemes. These 
counts are relative to the first encoding with word boundaries and halfword 
offsets. As indicated, byte encoding (halfword offset) generates about 63% of 
the instruction traffic of word encoding (halfword offset). Calculated over all 
references (including data), traffic is reduced by about 8%. This savings, 
representing the added efficiency of using smaller syllables, is significant 
compared to that of other encoding attributes. 

The savings in instruction traffic generated by the 8116 offset byte encoding 
over the pessimistic (halfword offset) byte encoding is about 5%. This is a 
savings of about 1 % for the mean total references. The cost of the more efficient 
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instr branch 
bound offset CHAT PLM QCl ILl mean 

1. word 16 1.0 1.0 1.0 1.0 1.0 
2. word 8 0.977 0.982 0.958 0.981 0.975 
3. byte 16 0.654 0.597 0.652 0.603 0.627 
4. byte 8/16 0.627 0.564 0.608 0.572 0.593 
5. byte 8 0.626 0.561 0.604 0.567 0.590 
6. bit 8/16 0.584 0.501 0.558 0.520 0.541 
7. bitt 8/16 0.550 0.469 0.525 0.478 0.506 

t log2 encoding 

Table 3-8: Instruction References for Benchmarks (per Encoding 1) 

encoding is a more complex assembler and two versions (one with byte offsets, 
one with halfword offsets) of each local branch instruction. 

The savings in instruction traffic generated by the standard bit encoding over 
the byte encoding is about 9%. Log2 encoding of permanent register specifiers 
saves about 6% over standard bit encoding. Again, calculated over all 
references, the savings are insignificant. Mitchell [53] gives similar results for 
Pascal programs. He reports that a Pascal DCA with bit encoded identifiers 
saves 15% of the instruction traffic over byte encoding. The savings for Prolog 
are lower because the instruction set is not as orthogonal as DCAs based on 
arithmetic operations. 

3.4. CIF Referencing Characteristics 

In this section, measurements of CIF attributes are presented and compared 
to W AM measurements. Recall that in Chapter 2, three Prolog CIFs are 
introduced: 

• naive CIF - this model, based on a frame stack, assumes a simple 
host that requires a memory access for every data reference. 

• traditional CIF - this model, also based on a frame stack, assumes 
a complex host that requires no memory accesses to reference 
frames in the stack. 

'ster-based elF - this model, based on separate choice point 
'!nvironment stacks, requires no memory accesses to reference 
~ister set. 
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instr 
traditional ClF 
naive ClF 
register-based CIF 

CHAT 
1.00 
1.00 
1.19 

MEMORY PERFORMANCE OF PROLOG ARCHITECTURES 

PLM 
1.00 
1.00 
1.18 

OC1 
1.00 
1.00 
1.14 

ILl 
1.00 
1.00 
1.17 

data CHAT PLM OC1 ILl 
traditional CIF 1.00 1.00 1.00 1.00 
naive CIF 4.64 4.83 4.74 4.65 
register-based CIF 3.73 4.34 4.03 4.09 

Table 3·9: Comparison Between Prolog CIF Memory Bandwidths 

CHAT 
ClFt 1.00 
WAM 1.19 
t assuming standard indexing 

PLM 
1.00 
1.29 

OC1 
1.00 
1.21 

ILl 
1.00 
1.25 

Table 3·10: W AM Instruction Bytes Referenced (per ClF) 

CHAT PLM OC1 ILl 
CIF total -:-1.,=0~0 __ -:-1:'::'0"70 __ ~1-,,:.0:.:::0 __ ---,1:.:..:.0~0 
W AM data 1.30 1.24 1.55 1.31 

instrt 1.21 1.28 1.39 1.31 
total -:-1.,=2:;.8 __ -:-1.:::.2"=5 __ ---:1~.5:-::1-----:1~.3=-=1 

naive:j: data 1.77 1.35 2.37 1.57 
instrt 1.49 1.36 1.69 1.53 
total 1.71 1.35 2.21 1.56 

t assuming bit encoding 
:j: no indexing 

Table 3·11: Standard (W AM) Indexing Memory Bytes Referenced (per CIF) 

CHAT PLM QC1 ILl 
ClF 1.00 1.00 1.00 1.00 
WAMt 1.01 1.16 1.24 1.08 
naive:j: 1.53 2.43 2.49 3.07 
t trail test only 
:j: trail all 

Table 3·12: W AM (De)trailing Memory Bytes Referenced (per CIF) 
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Table 3-9 shows the relative instruction and data references generated by 
these CIF models for the benchmarks studied. The traditional CIF, because it 
generates the lowest bandwidth of the models considered, is used as the baseline 
of this comparison, i.e., all reference counts are given relative to the traditional 
CIF. Notes on Table 3-9 follow. 

• The traditional CIF assumes tightly encoded instructions on bit 
boundaries. All frame variable specifiers are 10g2 encoded. Recall 
that the CIFs use variable length get/put Hst/ structure 
instructions with n operands, where n is the anty of the structure. 
This obviates unify instructions, but requires an additional three 
bit tag per operand, indicating how the operand is to be processed 
(e.g., as variable, value, constant, etc.). This also obviates the need 
for read/write mode in the image architecture. 

• The naive CIF is encoded identically to the traditional CIF. 

• The register-based CIF assumes similarly encoded instructions; 
however, only permanent variable specifiers are log2 encoded. 
Register specifiers require four bits. 

• Standard (single argument) indexing, a trail test, and a single stack 
are assumed. These attributes are subsequently analyzed 
individually. 

Whereas, for the benchmarks measured, the register-based CIF instruction 
bandwidth can be as much as 19% greater than the traditional CIF, data 
bandwidth can be as much as 330% greater. This difference indicates the relative 
importance of the instruction encoding and unlimited stack buffer assumptions in 
the traditional CIF. The regist~r-based CIF can decrease the worst-case data 
referencing of the naive model by only about 14%, compared to the 79% savings 
of the traditional CIF. 

Throughout the remainder of this section, the register-based CIF (simply 
called "the CIF") is compared in greater detail with the W AM. Tables 3-10, 
3-11, and 3-12 show the W AM reference counts relative to those of the CIF, for 
various attributes. Each attribute is measured independently of the others. 

Table 3-10 compares the instruction traffic of a standard byte encoded 
W AM (with byte local branch offsets) with the tightly encoded CIF. The table 
gives the number of W AM instruction bytes referenced per CIF instruction byte. 
As indicated, the W AM encoding causes from 19% to 29% more instruction 
traffic than the CIF encoding. For this comparison, both use standard (single 
argument) indexing. 

Table 3-11 compares the data and instruction traffic of W AM (single 
argument) indexing with CIF ideal indexing. Also given is the traffic for a 
naive architecture (not to be confused with the naive elF) with no indexing. The 
table gives the number of memory bytes referenced per CIF memory byte. For 
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CHAT PLM QCl ILl 
depth(B-stack) 845 997 599 210 
depth(E-stack) 1007 600 632 166 
depth(single) 1845 1577 1571 423 
% 100 101 78 89 

data( single) 1.000 1.000 1.000 1.000 
data(split) 1.015 1.025 1.018 1.023 

Table 3-13: Data Referencing of Single and Split-Stacks (Per Single) 

single-stack split-stack 
statistic mean 95%1 mean 95% 
cp depth 8.2 21 5.6 11 
env depth 14.2 40 7.0 18 
cp reset depth 39.6 55 42.1 55 
env reset depth 17.7 75 14.6 51 

t refers to 95% quantile 

Table 3-14: Comparison Between Single and Split-Stack Models 

this comparison, all the architectures use similarly tightly encoded instructions. 
As indicated, single argument indexing generates from 25% to 50% more 
memory traffic than ideal indexing. Lack of indexing generates up to 120% 
more traffic than ideal indexing. 

Table 3-12 compares the memory traffic devoted to (de)trailing (i.e., trailing 
and detrailing) for the W AM (with a trail test) and the CIF (with both a trail test 
and an inverse trail test). Also given is the traffic for a naive architecture with no 
trail tests. Without a trail test, up to three times the memory traffic is generated 
during (de)trailing. The inverse trail test saves from 1 % to 24% of the 
(de)trailing traffic generated with a trail test. Since (de)trailing accounts for a 
small percentage (on average less than 5%) of all memory references, this 
attribute reduces memory references by very little. 

Table 3-13 compares the maximum stack depths and data reference counts of 
the single and split-stack models, relative to the single stack model. The register
based CIF model with standard indexing is assumed here. Since the maximum 
depths of both the E-stack and B-stack may not occur simultaneously, 
comparison with the single stack depth must be made carefully. In most cases 
however, splitting the stack decreases the absolute stack depth. 

The split-stack always makes more data references than the single stack, by 
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1.5% to 2.5%. This is because management of two stacks requires an additional 
state register, C, as discussed in Section 2.2.4. References to C itself are not 
counted (just as with B in the single stack model), but management of two stacks 
requires saving/restoring C from memory. 

Table 3-14 compares the high-level memory characteristics which differ 
between the single and split-stack models. As expected, the split-stack model 
lessens object depth. Notice the 95% quantile of environment depth has been 
halved to 18 words. 

3.5. PW AM Referencing Characteristics 

In this section, the Restricted-AND Parallel Prolog architecture (PW AM) 
tools and the RAP-Prolog benchmark studied in this book are described. High
level memory referencing characteristics of the benchmark are then presented. 

The PW AM tools [35] are illustrated in Figure 3-12. PW AM traces differ 
from the W AM traces previously described in that each reference is marked with 
a processor identifier. The PW AM emulator produces trace records in a round
robin fashion as it emulates an instruction on each of mUltiple processors. 
References are not time-stamped, so this method is not entirely accurate; 
however, since the PW AM emulator time slice is one instruction, inaccuracies 
are not significant. The RAP-Prolog benchmark studied is deterministic in the 
sense that the control flow of the program cannot depend on the execution timing 
of the program. 

The PW AM emulator uses the following control policies in addition to those 
outlined in Section 2.3: 

• When a parallel call is entered, i.e., the CGE condition evaluates to 
true, the goals are executed sequentially if all PEs are busy. 

• The parent process of a parallel call waits for either all of its child 
processes to succeed, or one of its child processes to fail. 

Sderiv, the simple parallel benchmark measured in this book, is shown in 
Figure 3-13. The program is a synthetic variation of the symbolic differentiation 
program given by Warren [93]. The original program has been modified by 
adding two new differentiation rules which offer greater parallelism than the 
original rules. The initial mode declaration states that the first two (input) 
arguments of the d/3 predicate are completely ground, and that the third (usually 
output) argument contains no shared unbound variables. This declaration ensures 
that no checks are required in the CGEs. Because all body goals are placed in the 
CGEs, last call optimization cannot be exploited; however, the lack of this 
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PROLOG 
source 

RAP compiler 

RAP emulator 

trace 
file 

multi-cache 
simulator 

Figure 3-12: RAP-Prolog Performance Measurement Methodology 

optimization does not significantly affect the memory referencing behavior of the 
program. 

The Sderiv input datum is an irregular expression composed of summations 
of irregular expressions. The summations are highly regular trees of additions, 
and are nicely split by the first differentiation rule. The decomposition of the 
irregular expressions represent a much finer grain size and higher 
communication. 

High-level characteristics of the Sderiv benchmark are presented in Table 
3-15. The dynamic statistics were collected during a simulation of four 
processing elements (PEs). Instruction references were not measured; however, 
they have approximately the same high-level characteristics as in the W AM 
(Table 3-3). 

Table 3-16 compares the number of data words referenced by Sderiv 
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:- mode d(g, g, i). 

sderiv :- expr(X) , d(X, x, Y). 

d(A+B+C+D,X,DA+DB+DC+DD) :- !, 
(true I d(A,X,DA) , d(B,X,DB) , d(C,X,DC) , d(D,X,DD». 

d(A~B+C~D,X,DA~B+A~DB+DC*D+C*DD) :- !, 
(true I d(A,X,DA) , d(B,X,DB) , d(C,X,DC) , d(D,X,DD». 

d(U+V, X, DU+DV) :-!, (true d(U,X,DU) 
d(U-V,X,DU-DV) :-!, (true d(U,X,DU) 
d (U*v, x, DU*V+U*DV) : - ! , (true d (U, x, DU) 
d(U/V,X, (DU*V-U~DV)/VA2) :-!, (true d(U,X,DU) 
d(UAN,X, DU*N*UAN1) :-!,integer(N), Nl is 

d(-U,X,-DU) 
d(exp(U),X,exp(U)*DU) 
d(log(U),X,DU/U) 
d(X,X,l) :-!. 
d(C,X,O). 

d(U,X,DU) . 
: - ! , d (U, X, DU) . 
: - ! , d (U, X, DU) . 
:-!,d(U,X,DU) . 

value«(3*x + (4*exp(xA3)*log(xA2» -2) / 
(-(3*x) + S/(exp(xA4)+2»». 

expr( E+E-E~E/E*E/E ):
value (F) , 
E = F+F+F+F+F+F+F+F. 

, d(V,X,DV». 
, d(V,X,DV». 
, d(V,X,DV». 
, d(V,X,DV». 
N-l, 

Figure 3·13: RAP-Prolog Program Example: Sderiv 

executing sequentially in the W AM and on PW AM multiprocessors with one to 
eight PEs. For PW AM, the number of process management references increases 
steadily for Sderiv. On eight PEs, the parallelism exploited is so fine grained that 
management overheads increase dramatically - data references increase by 8%. 
This is mostly due to busy waiting. The PW AM emulator is organized to force 
quickly succeeding parallel processes within a CGE to wait for slower processes 
to complete. This busy waiting entails continuously reading a process 
management flag to determine if all sibling processes have completed. The 
memory bandwidth required by these extra reads can be almost completely 
removed with local memories. In fact, the busy wait loops generate atypical 
reference patterns because the references display 100% temporal locality, which 
skews the overall measure of program locality. Discounting busy wait 
references, the low number of extra references in comparison to the W AM is 
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Program 
static 
PW AM instructions 
dynamic 
procedure invocations 
PW AM instructions 
instructions/invocation 
data references 
data ref/instr 

Sderiv 

324 

1494 
34675 

23.2 
87890 

2.53 

Table 3-15: Summary ofPW AM Sderiv Benchmark on Four PEs 

Sderiv PEs data ref 
W AM __ ----=-1 __ --'7c...:4~35"'"""8 
PWAM 1 85709 

2 86180 
4 87890 
8 94922 

Table 3-16: PW AM Sderiv Data Bandwidth Efficiency 

area read % write % total % 
cp 19062 49.3 19566 50.7 38628 43.9 
env 10606 40.1 15866 59.9 26472 30.1 
heap 8912 46.7 10182 50.3 19094 21.7 
trail 0 0.0 1514 100.0 1514 1.7 
pdl 0 0.0 0 0.0 0 0.0 
pf-local 24 40.0 36 60.0 60 0.1 
pf-slot 24 51.1 23 48.9 47 0.1 
pf-lock 1391 92.2 118 7.8 1509 1.7 
marker 46 20.0 184 80.0 230 0.3 
goal 168 50.0 168 50.0 336 0.4 
message Q 0.0 Q 0.0 Q 0.0 
total 40233 45.8 47657 54.2 87890 100.0 

Table 3-17: PW AM Sderiv Data Referencing Characteristics on Four PEs 
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consistent with the results given by Hermenegildo [35] and helps confirm the 
efficiency of the PW AM model. 

Table 3-17 shows the Sderiv memory data reference statistics broken down 
by area and by type. This data was collected for a simulation of four PEs. 
Although each process references its own storage areas, the separate areas are 
lumped together in Table 3-17. The PW AM-specific storage areas include the 
Parcall Frames and Markers (marker) on the stack, Goal Frames in the Goal 
Stack (goal), and Message Buffer (message) (refer to Table 2-7). References to 
Parcall Frames are broken down into the local area (pf-Iocal), and the global area. 
The global area is further split into the Process Slots (pf-slot) and the two 
semaphores (pf-Iock). The profile is similar to the W AM benchmarks (Table 
3-5). Less than 3% of the memory references are PW AM overheads, and most of 
these are lock reads during busy waiting. 

3.6. Summary 

In this chapter, an empirical methodology is described for measuring the 
dynamic memory-referencing characteristics of Prolog programs. This 
methodology consists of a Prolog-to-Lcode compiler, Lcode assembler, Lcode 
instruction-set emulator, and various memory simulators. A set of four Prolog 
benchmarks (CHAT, PLM, QC1, and ILl) and one RAP-Prolog benchmark 
(Sderiv) are described. High-level memory-referencing characteristics of the 
benchmarks, measured with the tools described, are given. Characteristics of the 
W AM, Prolog ClFs, and PW AM architectures are presented. 

The W AM statistics indicate that even for well-written determinant Prolog 
programs, shallow backtracking dominates the Prolog data bandwidth 
requirement. The referencing localities of objects on the stack and heap roughly 
indicate the relative merits of different types of local data memories for reducing 
the memory bandwidth requirement. 95% of all references to choice points land 
within the top 21 words of the W AM stack. 95% of all references to 
environments land within the top 40 words of the stack. It is shown that in a 
split-stack architecture, 95% of all environment references land within the top 18 
words of the stack. For the heap, even the top 1200 words of the heap do not 
always capture 95% of all heap references. From these high-level statistics, 
choice point buffers, stack buffers, split-stack buffers, and general data caches 
appear to be viable alternatives for reducing memory traffic. Low-level memory
referencing measurements of the benchmarks executing on these local data 
memories are presented in the following chapters. 
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Several alternative W AM instruction encodings are considered in this 
chapter. Measurements are presented indicating that byte encoding generates 
about 63% of the instruction traffic of word encoding, all other encoding 
attributes being equal. Other encoding attributes, such as branch offset size and 
bit encoding, do not reduce the instruction bandwidth requirement as 
significantly. 

High-level memory-referencing statistics of three (naive, traditional, and 
register-based) Prolog ClFs are presented. The register-based CIF generates as 
much as 330% more data traffic than the traditional CIF, yet only as much as 
19% more instruction traffic, indicating that the unlimited stack buffer 
assumptions in the traditional CIF far outweigh its instruction encoding 
advantages. Compared to the naive model, the register-based CIF reduces data 
traffic by about 14%, whereas the traditional CIF achieves a 79% reduction in 
traffic. Measurements of more detailed CIF attributes are presented for the 
register-based CIF, which cOITesponds most closely to the W AM. Among these 
attributes, ideal indexing offers the greatest traffic reduction - single argument 
(W AM) indexing generates 25%-50% more memory traffic than ideal (CIF) 
indexing. This result indicates that efforts to improve the W AM and its related 
compiler technology should concentrate primarily on indexing. As is discussed 
in the next chapter, poor indexing can alternatively be improved with hardware, 
in the form of local memories. 

The RAP-Prolog memory-referencing characteristics of the Sderiv 
benchmark are also presented in this chapter. On a single processor, PW AM 
generates about 15% more memory references than the WAM. This overhead 
increases to 28% for eight processors (where most of the overhead is due to busy 
waiting). These high-level statistics indicate that PW AM does not sacrifice 
much of the W AM's efficiency to achieve parallelism. Further measurements of 
Sderiv presented in Chapter 5 explore the PW AM overheads in more detail. 



www.manaraa.com

4 Uniprocessor Memory Organizations 

In this chapter, two-level memory hierarchies are defined and measurements 
are presented and analyzed for sequential Prolog architectures. The first level 
consists of a local memory. The second level consists of an interleaved main 
memory. Both traditional local memory models, as well as models suited 
specifically to the Prolog architectures previously introduced, are examined. 
Queueing models are used to determine the main memory interleaving required 
to support the local memory configurations. In the next chapter, these memory 
hierarchy designs are extended to multiprocessor systems. 

Local data memories include a choice point buffer, stack buffer, environment 
stack buffer, copyback cache, and "smart" cache. Local instruction memories 
include an instruction cache and look-ahead instruction buffer. In addition, 
combined instruction/data copyback cache measurements are presented. Local 
memory configurations are presented, consisting of a combination of these 
memories, ranging from low costilow performance to high costlhigh performance 
systems. Local memory performance measurements are given in terms of hit 
ratio, traffic ratio, copyback ratio, and dirty line ratio. These measures allow 
comparison between the local memory designs and supply the main memory 
queueing models with critical design parameters. It is shown that small local 
buffers perform quite well - a 12 word single choice point buffer reduces the 
memory data bandwidth requirement by 38%. Larger, sophisticated local 
memories perform significantly better - a 1024 word "smart" data cache 
reduces the memory data bandwidth requirement by 93%. 

The second-level main memory and memory bus are modeled, with 
asymptotic M/G/1 queueing models, for typical system configurations: a 
combined liD cache, and a look-ahead instruction buffer + stack buffer 
configuration. The measurements presented indicate that although the stack 
buffer configuration can make more efficient use of an interleaved main memory 
than can the cache, the cache performs better because it captures heap references 
and code loops, which the stack and instruction buffers cannot capture. 
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Both uniprocessor and shared memory multiprocessor architectures are 
studied in this book. For both of these host organizations, motivations are now 
given for reducing, with local memory, the memory bandwidth requirement and 
the effective memory latency. From the previous chapter, the benchmarks 
studied have an average number of 3.0 words referenced per instruction 
executed. The average number of instructions executed per "logical inference" is 
15.0. Therefore to attain one MLIPS (millions of logical inferences per second) 
average performance, or 15 MIPS (millions of W AM instructions per second), 
180 Mbytes/sec sustainable memory bandwidth is required. 

Even if a shared memory multiprocessor is used to deliver this performance, 
the bandwidth requirement must still be satisfied by a single (possibly 
interleaved) main memory if no local memory exists. In addition, 
multiprocessors have communication overheads which imply an even greater 
bandwidth requirement. A main memory suitable for symbolic processing 
applications must be large and therefore cost and packaging constraints typically 
prevent it from having a fast access time. A suitably interleaved memory, for 
instance, may achieve the bandwidth requirement under ideal conditions. In 
general, however, contention between requests to the same main memory module 
will reduce the deliverable bandwidth. Considering single bus interconnections, 
current technology buses can deliver only a fraction of the required bandwidth 
(e.g., the current Sequent can deliver 32 Mbytes/sec peak bandwidth). Emerging 
technology buses, however, may be able to deliver up to 200 Mbytes/sec peak 
bandwidth [5] (sustained bandwidth will be lower). These considerations 
indicate that the target of one MLIPS will tax the bandwidth capabilities of single 
memory systems. The introduction of local memory can reduce the bandwidth 
requirement, allowing the processor(s) to operate closer to their peak 
performances. 

More important than the reduction in bandwidth requirement is the necessity 
to reduce the memory latency, i.e., the delay in servicing a given memory 
request. With only a single memory, each request requires the full access time of 
the memory. As previously argued, large memory systems have slow access 
times, and therefore long latencies. From the results of the previous chapter, 
about 40% of all memory references generated by the W AM are data reads. 
Assuming that the processor must stall until a data read is serviced, and 
assuming that the memory request rate of the processor is much higher than the 
service rate of the memory, only about 60% of the target performance can be 
achieved. Under the more optimistic assumption that a processor can sustain up 
to two data reads on average before stalling, approximately 80% of the target 
performance can be achieved, etc. The introduction of local memory can reduce 
the effective memory latency, thereby allowing the processor(s) to operate closer 
to their peak performances. 



www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS lOS 
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Figure 4·1: Uniprocessor Memory Model 

4.1. Memory Model 

The memory model, illustrated in Figure 4-1, consists of a single processing 
unit making requests to a two-level memory hierarchy. The closest level to the 
CPU is a local memory of limited capacity. The second level in the model is a 
slower main memory of unlimited capacity. The local memories examined are 
queues, buffers, and caches. Certain local memories capture only select types of 
references, accessing others directly from main memory. These memories are 
managed with a copyback policy: write references contained in the local memory 
are serviced there without immediately updating main memory. Main memory is 
later updated when the modified local memory location (called a dirty location) 
is chosen for replacement. 

In Section 5.3, local memories managed with a write-through policy are 
examined. Write references are issued to both the local and main memories, thus 
keeping the two consistent. In addition, a hybrid policy of copyback and write
through for different types of requests is examined. As is discussed in Section 
5.2 these local memories solve coherency problems inherent to multiprocessors. 

For a given program, the processor issues R requests or references, broken 
down into reads, Rr, and writes, Rw' Requests are in units of words. The 
requests can also be broken down into hits, Rh, and misses, Rm, indicating 
whether the request is serviced from local or main memory: 

R = Rr + Rw = Rh + Rm' 
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In addition, read request misses, Rr,m' write request hits, Rw,h' etc., are defined. 
The miss ratio, mr, is the fraction of requests that cannot be serviced from local 
memory. Assuming a write-allocation policy, where write misses are loaded 
into the local memory, 

mr=Rm/R. 

With a no-write-allocation policy, write misses do not contribute to the miss 
ratio, 

mr = Rr,m I Rr· 
Hit ratio is an alternative measure to miss ratio, 

hr = 1 - mr. 

For a copyback local memory, the main memory traffic, Rs' is the requests made 
to main memory, 

Rs = (Rm + C)B, 

where C is the number of copyback requests and B is the size of blocks (in 
words) transferred between main and local memory. For a write-through local 
memory, the main memory traffic is 

Rs = Rr,mB + Rw' 
This is easily generalized for a hybrid local memory that copies back certain 
request types and writes-through others. 

The traffic ratio, tr, is the ratio of main memory traffic to local memory 
traffic. An alternative definition is the ratio of the number of references serviced 
by the main memory with local memory, to the number of references serviced by 
the main memory without local memory. 

tr=Rs/R. 

The copyback ratio, cr, is the ratio of the copyback traffic (to main memory), to 
the write traffic (to local memory), 

cr = C*B IRw' 

The dirty line ratio, dr, is the fraction of local memory replacements which 
require copyback, i.e., the ratio of copybacks to misses, 

dr = C/Rm. 

By definition, hit and dirty line ratios are less than one, whereas traffic and 
copyback ratios can be greater than one. The latter can happen if the replacement 
granularity (a block) is greater than one word (the reference size). Large blocks 
increase hit ratio by virtue of prefetching sequential locations, i.e., exploiting 
spatial locality. A well-balanced model must have both high hit ratio and low 
traffic ratio (significantly less than one if possible). The copyback ratio indicates 
the efficiency of the copyback policy. A low (less than one) copyback policy is 
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desirable, although it is not critical if the traffic ratio is low. A high copyback 
ratio indicates that a write-through policy is possibly better. A low dirty line 
ratio is desirable, indicating that not much copyback traffic is necessary. 

In the remainder of this chapter, measurements of these statistics are 
presented for various local memory models. The performance of configured 
models, e.g., a choice point buffer combined with a instruction buffer, are 
calculated by combining the statistics of the singular models in the following 
manner. Consider partitioning all memory references into an exhaustive and 
mutually exclusive set of reference types. A reference type, in contrast to a data 
type, corresponds to a storage area, e.g., the heap, trail, etc. When combining 
local memory models which capture certain memory types, the following 
relations hold: 

hr = lhrlr(j) 

tr = ltrjPr(j) 
where Pr(j) is the fraction of references of type j. A reference type i that is not 
captured by any local memory in the configuration, has hri=O and tri=1. 

These statistics are then used to derive the main memory interleaving factor 
necessary to increase memory bandwidth. An interleaved memory consists of m 
modules, where each memory module can be accessed independently and 
multiple requests to the same module are queued. For a sequential processor, as 
the number of modules is increased, a local memory with a larger block size, B, 
can be accommodated. This can increase local memory performance. For a 
multiprocessor, as the number of modules is increased, contention at the modules 
between different processor requests is reduced, thus increasing performance. 

4.2. Data Referencing 

4.2.1. Choice Point Buffer 

A choice point buffer offers maximum data bandwidth reduction at minimal 
cost. An example of a choice point buffer design is that of the PLM [21]. A 
buffer holding the current choice point is simple and directly reduces the primary 
data bandwidth requirement caused by shallow backtracking. In the W AM, 
choice point references are always made to the current choice point defined by B. 

This facilitates designing a simple yet efficient buffer as illustrated in Figure 4-2. 
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Figure 4-2: Choice Point Buffer Model 

Figure 4-2 shows the three possible states of the buffer: invalid, valid, and 
partially valid. The buffer has a valid bit indicating whether it contains a choice 
point or partial choice point. m, ranging from zero to BujferSize, indicates the 
number of valid entries if the valid bit is set. Instructions which create choice 
points copyback the valid portion of the buffer to memory and load the new 
choice point. Instructions which reset the current choice point simply invalidate 
the buffer. 

The choice point buffer management scheme is summarized below (refer to 
Figure Col in Appendix C for the detailed algorithm). If the buffer is invalid, 
choice point references are serviced from memory. If the buffer is valid, a choice 
point reference is not guaranteed to be contained by the buffer. A reference to a 
choice point larger than the buffer size may require service from memory. It is 
assumed that when referencing large choice points, the host (by either microcode 
or reduced native code) will access the valid portion (up to BuJferSize) from the 
buffer and the invalid portion directly from main memory. This obviates the 
need for runtime checks. 

The following variations of this management policy were examined: 

• Use dirty bits to reduce memory traffic - A dirty bit is a flag 
associated with each buffer entry indicating if that entry holds a 
value not updated in main memory. This policy does not 
significantly affect traffic or copy back ratios because choice points 
are only allocated in the buffer when they are created. 
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• Always load the current choice point into the buffer - This policy 
ensures that all instructions which modify B also load the new 
current choice point into the buffer. Higher hit ratios are attained at 
the cost of increased traffic ratios. Even with dirty bits, the buffer's 
traffic ratios are over three times that of the former policy. 
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Figure 4-3 shows the choice point buffer performance measurements. These 
statistics account for choice point references only, i.e., the only memory requests 
counted are choice point requests. In this and all subsequent memory 
simulations, "cold start" measurements are presented. Hit and traffic ratios level 
off at a buffer size of 12 words. An eight word buffer, which contains at most 
one saved argument, achieves a hit ratio of 0.70. A 12 word buffer increases the 
hit ratio to 0.84 and reduces the traffic ratio to 0.28. QC1 exhibits significantly 
higher hit ratios and lower traffic and copyback ratios than the other programs. 
CHAT exhibits significantly lower hit ratios and higher traffic and copyback 
ratios than the other programs. This behavior can be attributed to CHAT's 
highly nondeterminate style and QC1 's highly determinate style. 

The choice point buffer has two additional advantages: 
• Simplicity of design and small size map well onto VLSI. 

• The buffer can be distributed over the state and argument registers, 
as shadow registers. This reduces the time required to read and 
write a choice point. This idea was first reported in Tick [82] and 
implemented in the Pegasus Prolog processor [71]. 

4.2.2. Stack Buffer 

An alternative to the choice point buffer is a more ambitious buffer which 
captures portion(s) of the stack. A reasonable design is a directly addressable 
wrap-around buffer containing the top portion of the stack. The advantage of a 
stack buffer over a choice point buffer is that the stack buffer captures both 
environment and choice point references. In addition, the stack buffer can 
capture deep choice points. 

Examples of stack buffer designs include the Symbolics 3600 stack buffer 
[80], DCA contour buffers [2], and the C Machine stack cache [19]. The 

Symbolics 3600 stack buffer is composed of four 256 word pages. Management 
is based on pages - upon overflow, a page is spilled and upon underflow, a page 
is restored. Alpert's contour buffer holds variable sized contours, similar to 
activation records. Management is based on contours - upon overflow, the 
oldest contour is spilled and upon underflow, the topmost contour is restored. 
Ditzel's stack cache is similar to the DCA contour buffer. 

The Prolog stack buffer model is illustrated in Figure 4-4. The stack buffer 
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Figure 4·3: Choice Point Buffer Performance Measurements 
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management scheme is summarized below (refer to Figure C-2 in Appendix C 
for the detailed algorithm). Assume that the stack grows upward in addresses. In 
Figure 4-4, physical buffer addresses increase downward. A points to the highest 
valid stack address in the buffer. Z points to the lowest valid stack address in the 
buffer. E and B point to the current environment and choice point, respectively. 
TOS is the top of stack pointer. 

The buffer is managed by instructions which allocate and deallocate stack 
objects (environments and choice points). Instructions which create an object 
load the new object into the stack buffer if the object is not larger than the buffer. 
If the object fits in the buffer, the appropriate portion of the buffer is copied back 
to make room for the new object. Dirty bits are used to minimize the number of 
buffer entries requiring copyback. If the new object does not fit in the buffer, the 
entire buffer is copied back and invalidated. 

Instructions which deallocate objects reset TOS to the new top of stack. If 
Z>TOS, the buffer is invalidated. If Z<TOS, the buffer remains valid. No 
copyback is necessary in these situations because objects more recent than the 
new top of stack are not needed. 

If the buffer is invalid, stack references are serviced from memory. If the 
buffer is valid, stack references are not guaranteed to be contained by the buffer. 
For instance, references to a deep environment may not be in a valid buffer. 
Thus the model requires runtime address comparison to detect a buffer hit. The 
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model can be extended, in obvious ways, to avoid runtime comparisons in certain 
instances. 

An alternative policy is to always prefetch the top portion of the stack into 
the buffer, thus avoiding the need for runtime comparisons. This alternative 
policy is taken in most stack buffers designed for procedural languages, e.g., 
DCA contour buffers. The "regular" stack growth of procedural languages 
allows these buffers to be restored when a buffer underflow occurs, without 
generating excessive memory traffic. Prolog stack behavior is more irregular 
because of choice points protecting deep environments, and failure and cut 
releasing large portions of the stack. This irregularity coupled with a policy of 
buffer restoration upon underflow is expected to generate excessive memory 
traffic. Therefore the alternative policy was not measured. 

Figure 4-5 shows the stack buffer performance measurements. These 
statistics account for stack references only. Notice that CHAT exhibits a lower 
hit ratio and higher traffic and copy back ratios than the other benchmarks, 
indicating less locality. In fact, CHAT significantly affects the mean ratios. The 
statistics indicate that a stack buffer of 64 words, with a hit ratio of 0.95 and 
traffic ratio of 0.08, is sufficient to capture most locality in the benchmarks. 
Figure 4-6 shows the effect of the dirty bits on reducing memory traffic. The 
traffic is reduced in the range of 27% to 42%, for buffer sizes 128 and 16 words 
respectively. 

Note that both the stack buffer and the choice point buffer models are 
organized around one word entries. This assumption may not be realistic for a 
system with a wider bus (i.e., a wider physical memory word). Realistic local 
memories are organized around blocks or lines of multiple physical words. The 
advantage of blocks is that block access time can be reduced by pipelining 
memory module accesses in an interleaved memory. The disadvantage of blocks 
is that excess traffic is generated whenever the entire block need not be 
transferred (e.g., if a dirty block to be copied back is not entirely dirty). Thus the 
buffer statistics presented here may be optimistic in terms of raw traffic. 
However, estimates of burst mode traffic may be pessimistic. 

Figure 4-7 shows the choice point reference hit ratios for the stack buffers 
and choice point buffers. The stack buffer captures a significant portion of deep 
choice point referencing that a single choice point buffer cannot capture. Recall, 
however, that the choice point buffer, because of its simplicity, does not require 
runtime address comparisons to determine a hit, as does the stack buffer. In 
addition, a choice point buffer can be distributed in implementation (as shadow 
registers), whereas the stack buffer cannot. 
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4.2.3. Environment Stack Buffer 

The split-stack architecture, introduced in Section 2.2.4, increases the 
locality of environment references. A reduction in the memory bandwidth 
requirement was anticipated as a result of increased environment locality. 
Environment bandwidth reduction was measured by modeling an environment 
stack (E-stack) buffer. The E-stack buffer model is similar to the stack buffer 
illustrated in Figure 4-4, except that only environments reside within the buffer. 

The E-stack buffer management scheme is summarized below (refer to 
Figure C-4 in Appendix C for the detailed algorithm. Definitions of set(n) and 
copyback(d) are given in Figure C-2). Assume that E points to the current 
environment, TOS points to the top of the E-stack, and Z points to the lowest E
stack address valid in the buffer. 

As with the stack buffer model, the E-stack buffer is managed by instructions 
which allocate and deallocate environments and choice points. A newly created 
environment is allocated in the buffer, possibly causing a copyback. Deallocated 
objects, both environments and choice points, possibly cause the the top of stack 
to be reset. If Z>TOS, the buffer is invalidated. If Z<TOS, the buffer remains 
valid. No copyback is necessary in these situations because objects more recent 
than the new top of stack are not needed. Alternative policies are to always 
prefetch the top portion of the E-stack into the buffer or to always load the 
current environment into the buffer. These approaches are expected to cause 
excessive memory traffic and were not measured. 

Figure 4-8 shows the E-stack buffer performance measurements. These 
statistics account for environment references only. Figure 4-9 shows a 
comparison of the single and split-stack model environment reference hit ratios. 
A 32 word E-stack buffer and 64 word stack buffer give similar performance. 
Choice point locality in the split-stack model is also increased. This effect is 
immaterial, however, if a choice point buffer, which buffers only one choice 
point, is used. 

4.2.4. Copyback Cache 

An alternative to the previously described local memories is a data cache, 
which can capture all types of references, i.e., heap and trail references as well as 
stack references. A cache, in contrast to the buffers previously described, is not 
included in a conventional processor architecture. In other words, a cache 
exploits locality without explicit knowledge of architecture. Whereas the buffers 
are managed explicitly by instructions, matching expected referencing patterns to 
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program s0mantics, the cache is managed implicitly by replacing fixed sized 
objects on a demand basis. In this section, a data cache model is described and 
measurements are presented. 

The cache model considered in this section is line (block) oriented, i.e., all 
transfers to/from main memory are line transfers. A write-allocation policy is 
used wherein both read and write misses cause fetching of the target. A 
copyback or write-back policy is used wherein writes to the cache do not 
immediately update main memory. Main memory is updated only upon cache 
replacement. The cache is categorized by a number of blocks or lines of a given 
size (in words). The cache is modeled as a fully associative memory, i.e., any 
line within the cache can contain any line from main (or virtual) memory. A 
perfect least recently used (LRU) replacement algorithm is used - the block 
least recently referenced is replaced next. Dirty bits are used to minimize the 
number of blocks requiring copyback. 

An alternative cache model uses a write-through policy, where all writes are 
issued to both the cache and main memory. The copyback policy is superior to 
the write-through policy because the copy back policy reduces memory traffic 
more effectively. This is especially important in Prolog, where the read to write 
ratio is almost 1:1 (see Section 3.3.1). The write-through policy, however, 
maintains a consistent main memory, whereas the copyback policy does not. 
Variations of the write-through policy are studied in the next chapter because 
these strategies facilitate solving the multiprocessor consistency problem. 
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Inaccuracies in the formulation of this simple cache model follow. 
• replacement policy - Pure LRU is assumed. Inexpensive 

implementations of other replacement algorithms closely 
approximate pure LRU [79]. In certain circumstances, LRU may not 
be the best replacement policy, e.g., random replacement may be 
best for small I-caches [76]. In any case, replacement policy is a 
minor parameter compared to cache size [76]. 

• mapping policy - Full associativity is assumed. Real 
implementations use set associativity, restricting the number of 
cache locations where a line can be placed. Smith [74] reports that 
2-way set-associativity performs quite well, with performance 
leveling off for 4-way set-associativity. 

• traffic ratio - Traffic ratio, as defined in Section 4.1, treats a block 
transfer as a number of B equal word transfers. This definition 
ignores implementation possibilities wherein blocks are transferred 
at rates Jaster than the sum oj the constituent words. This method of 
burst mode transfer is possible with interleaved memory modules in 
a pipelined fashion. Traffic ratio can be scaled to account for these 
effects [38]. Instead, in later sections, queueing models are 
developed incorporating burst mode effects. Unscaled traffic ratio 
can be viewed as a conservative statistic to be used for comparison 
of local memories. 

• block/sub-block sizes - The simple allocation policy used here 
requires transfer of an entire block on a cache miss. An alternative 
policy transfers only a portion of a block, called a sub-block, while 
allocating an entire block. This alternative policy reduces traffic and 
cache map size, at the cost of increasing miss ratio. Miss ratio is 
increased because spatial locality is no longer exploited. An optimal 
trade-off between block and sub-block sizes can often be found [38]. 
Larger sub-blocks give optimum performance for scaled traffic, i.e., 
traffic accounting for burst mode transfers of blocks [38]. In the 
main memory models of the next chapter, interleaving is assumed, 
implying that the simplifying assumption used here (block size = 
sub-block size) is reasonable. 

• write-allocation policy - This policy refers to the fetching of the 
target of a write miss into the cache. A no-write-allocation policy 
consistently generates less memory traffic for small caches (64 
words or less). Another method of reducing traffic in small caches is 
the use of sub-block allocation, as previously described. 

• cache size - Cache size, as defined here, is net size, i.e., "offered 
data" size, discounting space required for addressing tags. To be 
more accurate, especially for small caches and caches with small 
lines, gross size should be calculated. 

Figure 4-10 shows the data cache performance measurements. The 
copyback cache simulator used to make these measurements is a translation of 
the DELCACHE program written by D. Alpert [2]. Large caches and caches 
with small block size satisfy the criteria of low traffic and copyback ratios. 
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However, small block caches have low hit ratios. The best small cache is 32 
blocks of two words each with a hit ratio of 0.84. The best medium cache is 32 
blocks of four words each with a hit ratio of 0.94. The best large cache is 32 
blocks of eight words each with a hit ratio of 0.97. The medium and large caches 
retain similar traffic characteristics while improving hit ratio at the cost of 
doubling cache size. The data cache simulations indicate that even small caches 
deliver high performance. Heap and trail referencing exhibit more spatial 
locality than may have been expected. When reading and writing structures on 
the heap, referencing is sequential. Even nested structures are laid down in a 
localized area. The trail is also read and written sequentially. 

Figure 4·11 shows the dirty line ratios of the data caches. Recall that the 
dirty line ratio is the ratio of replacements that require copyback (the replaced 
line is dirty) to total number of replacements. Copyback ratio is the ratio of 
writes issued by the cache to writes issued by the processor. In a pure copyback 
cache, writes issued by the cache are the number of dirty lines copied· back, 
scaled by the line size. The copyback ratio and dirty line ratio are therefore both 
functions of the number of dirty lines replaced, called the dirty total. In the dirty 
line ratio, the dirty total is inversely scaled by the number of misses. In the 
copyback ratio, the dirty total is directly scaled by the line size. Removing the 
scaling from the copyback ratio statistics (Figure 4·10) indicates that small line 
sizes have the greatest dirty total. Thus the result shown in Figure 4-11, where 
the dirty line ratio is inversely proportional to line size, is not surprising. 
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Another unexpected result is that copyback ratios are inversely proportional 
to cache size whereas dirty line ratios are directly proportional to cache size. 
Dirty line ratio is directly proportional to dirty total and inversely proportional to 
miss total. In the data cache, the number of misses (and the miss ratio) drops off 
very fast as cache size increases, whereas the dirty total does not. As a result, the 
dirty line ratio increases. This may be explained as many write hits in the cache 
create many dirty lines, so that for the rare miss, replacement has a higher 
probability of selecting a dirty line. 

4.2.5. Smart Cache 

In contrast to the traditional caches analyzed in the previous section, smart 
caches are not ignorant of the instruction set architecture. A smart cache, as 
defined here, avoids fetching or copying back lines that are not contained in the 
current valid storage areas of the machine model, e.g., invalid portions of the 
stack and heap. The PSI-II and Firefly machines both utilize one word line 
caches with write-allocation. These caches implement the smart feature of 
avoidance of fetching a write miss on the top of stack. Note that avoiding a stack 
or heap fetch can be implemented by a host instruction (e.g., PSI-II's 
wri te-stack operation [56]), whereas avoiding copyback requires a runtime 
check by the cache. 

Ross and Ramamohanarao [69] present and measure a similar management 
strategy but at the next higher level: the transfer of pages between main memory 
and disk. Their results show that for compiled Prolog programs, page traffic is 
reduced by a factor of two over a conventional paging strategy. This suggests 
that a similar cache line transfer management policy may be beneficial. The 
smart cache strategy essentially introduces the management policies of the stack 
buffer into the cache. 

The potential bandwidth reduction offered by a smart cache is indicated by 
the high-level statistics presented in Section 3.3.1. Almost all writes to the stack 
occur at the top - the mean choice point write depth is 5.0 words and the mean 
environment write depth is 9.7 words. In addition, certain benchmarks display 
frequent writes to the top of heap - CHAT and ILl have a mean heap write 
depth of 6.0 words. Therefore avoidance of fetching the line at the top of the 
stack or heap, on a write miss, has the potential to significantly reduce memory 
traffic. 

A voidance of copying back dirty yet invalid portions of the stack appears 
beneficial because on average, 40 words at the top of the stack are freed by each 
choice point deallocation. Environment and heap deallocations are only half as 
effective, freeing up 18 words on average. 
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A smart copy back cache was simulated, based on the previous copyback 
cache. The smart cache avoids fetching and copying back lines not contained 
within the current valid storage boundaries, as defined by H, B and E. Figure 
4-12 compares the smart cache and standard copyback cache data traffic ratios. 
Both models give identical hit ratios. The percentage reduction in traffic ratio 
afforded by the smart cache over the standard cache is given in the last graph in 
Figure 4-12. As indicated, savings of 20% to 30% are expected. 

Figure 4-13 shows the breakdown of references saved by the smart cache, for 
each benchmark. For each benchmark, four percentages are given, adding up to 
100% of the traffic savings: heap fetches (heap-f), heap copybacks (heap-cb), 
stack fetches (stack-f), and stack copybacks (stack-cb). Removal of heap fetches 
contributes the most to the traffic savings, with removal of stack copybacks 
second. Note that removal of stack fetches consistently offers the least savings. 

4.2.6. Comparison of Data Memories 

In Section 4.2.1, choice point buffer performance statistics are presented 
considering only choice point references. Similarly, the stack buffer and 
environment buffer performance statistics presented concerned only reference 
types that could be stored in the associated memory. These statistics show how 
well the buffer exploits the locality of its associated data storage area. Total 
memory system performance includes both local memory performance and the 
performance of other reference types. In some cases, these other references 
bypass the local memory, and total memory system performance is significantly 
lower than the local memory performance. Figures 4-14 and 4-15 show the 
statistics accounting for all data reference types (instruction reference types will 
be included in Section 4.4). Included in these figures are 8 and 16 word choice 
point buffers, 16 - 256 word stack buffers, 64 - 1024 word caches (with four 
word line), and 16 - 256 environment stack buffers combined with a 16 word 
choice point buffer. 

The environment stack buffer + choice point buffer configuration statistics 
are calculated from the individual simulator measurements, with the method 
given in Section 4.1. Although the number of references to the stack and heap in 
the W AM and split-stack architectures are different, the counts are approximately 
the same (to within 2.5% worst case - see Section 3.4). The W AM counts are 
used here. 

With the equations of Section 4.1, a choice point buffer configured with an 
environment buffer is modeled as: 

hrcp+env = hrcpPcp + hrenvPenv 
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trcp+env = trcpPcp + trenyPenv + Prest· 

Figures 4-14 and 4-15 indicate that this configuration does not perform as well as 
a stack buffer of equivalent size. This result reconfirms the results of Figure 4-7, 
showing that the stack buffer captures a significant portion of the choice point 
references that a choice point buffer cannot - those below the top of stack (deep 
backtracking). This result is unfortunate in the sense that a choice point buffer, 
implemented as a set of shadow registers, is useful because it decreases the 
execution time of choice point creation and failure, during shallow backtracking. 
Yet a stack buffer produces significantly less memory traffic. The combination 
of choice point buffer and stack buffer is untenable because of aliasing problems 
- the same memory location may reside in both buffers. In fact, with the 
proposed stack buffer management algorithm (Figure C-2 in Appendix C), 
shallow choice points will always alias, thus defeating the advantage of shadow 
registers. Related designs, however, such as a dual choice point buffer coupled 
with an environment stack buffer, may approach the performance of the stack 
buffer. The AM29000, a recent high-performance microprocessor with both 64 
registers and a 128 word stack buffer [99], is an excellent host for implementing 
such a configuration. 

The data cache displays significantly higher hit ratios than the buffers (note 
that both the copyback cache and "smart" cache have identical hit ratios). For 
small caches, the hit ratio is paid for with a correspondingly high traffic ratio. 
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Caches of 64 words or less, however, do better without write-allocation, and so 
these results are disputable. The stack buffer generates less traffic than the cache 
for sizes of about 200 words and less; however, the stack buffer's advantage over 
the smart cache is for sizes of about 130 words and less. Above these thresholds, 
the caches are superior, although hardware cost should also be considered -
generally, cache hardware is more costly than stack buffer hardware in terms of 
access time and number of gates. 

The memories compared fall into three ranges of performance and cost, 
where buffer size in words is a simple approximation to cost. For low cost, 16 
words or less, a choice point buffer implemented as shadow registers has the best 
performance. For medium cost, 32 - 128 words, the stack buffer is best. For 
high cost, greater than 130 and 200 words, the smart and copyback caches 
respectively are best. 

The data cache performance for the W AM is now compared to similar local 
memories for procedural language architectures. Because numerous studies have 
been made of the memory characteristics of procedural languages, and this book 
is one of the first studies of Prolog memory characteristics, it is helpful to the 
intuition to understand their relationship. Mulder [55] measured the data 
memory performance of typical Pascal programs. Only traffic ratio, the most 
significant statistic, is compared here. Figure 4-16 shows the traffic ratios of two 
and four word line caches for Pascal and Prolog. The Pascal benchmarks 
generated significantly lower traffic ratios. For the lowest traffic measured, that 
of 1024 word caches with two word lines, the Pascal traffic ratio is 0.031,33% of 
0.094 for Prolog. For four word lines, the Pascal traffic ratio is 0.049, 50% of 
0.10 for Prolog. These results indicate that the Pascal working set is smaller and 
locality is higher. The Prolog storage model is more complex than the Pascal 
storage model, entailing a heap, stack and trail. In addition, the heap and stack 
can grow large (see Table 3-4). Even with garbage collection, the Prolog storage 
areas will grow erratically, still giving a larger working set than Pascal. 

4.3. Instruction Referencing 

Local memory buffers capturing instruction references are introduced in this 
section. A look-ahead instruction buffer, instruction cache, and combined 
instructiOn/data (UD) cache are described and measurements are presented. The 
functions of an instruction buffer and cache are complementary. An instruction 
buffer prefetches the instruction stream, attempting to supply the CPU with a 



www.manaraa.com

UNIPROCESSOR MEMORY ORGAN[ZA TIONS 127 

0.7 

0.6 

0.5 

.2 0.4 ~ 2w Prolog 
1!1 .... 4w Prolog 
(,) 

0.3 ..... 2w Pascal := 
~ .... 4w Pascal 

0.2 

0.1 

0.0 
64 128 256 512 1024 

cache size in words 

Figure 4-16: Pascal and Prolog Copyback Data Cache Measurements 

constant supply of instructions. An instruction cache reduces the effective access 
time of instruction references and prefetches instructions by block. Often a 
simple instruction buffer that cannot capture loops is configured with an 
instruction cache, or IID cache, which does. 

All local instruction memory performance measurements presented in this 
book are based on the most realistic, fixed-size byte-encoded formats defined in 
Section 3.3.2. The Lcode emulator, however, executes loosely encoded 
instructions, most of which are either one or two words in length. Although this 
facilitates fast emulation, it makes accurate instruction trace production difficult 
for other encoding schemes. There are two reasons for this. First, program size 
varies with encoding scheme, therefore branch target distance varies. Second, 
individual instruction sizes vary with encoding scheme. A mapping is made 
from Lcode addresses to byte-encoded instruction addresses, which solves the 
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above problems, while generating the instruction trace file. 10 

4.3.1. Instruction Buffer 

The instruction buffer (I-buffer) modeled captures sequential instructions. 
The instruction stream is prefetched to guarantee that a program without 
branches will never miss in the buffer. Branches cause the buffer to be 
invalidated and a new buffer full of instructions to be fetched. This model is 
sufficient to approximate hit and traffic ratios. The problem is that a sequence of 
simple instructions may empty the buffer faster than prefetching can keep it 
filled. See Rau [65] for a more complete model which can measure this effect. 
This problem is assumed to be minor here because the W AM is a high-level 
instruction set that requires significantly more time to execute most instructions 
than a conventional architecture. 

The degree of prefetching, d, is defined as the number of bytes prefetched 
when a reference misses in the buffer (d bytes beyond the missed reference 
itself). Each decoded instruction prefetches a number of bytes equal to the size 
of that instruction. Therefore the model retains d bytes of unseen instructions in 
the buffer at all times. In other words, the model simulates buffers of size d. As 
d is varied, the hit ratio remains constant, limited only by the number of branches 
in the instruction stream. Lcode branches occur after instructions such as call 
and try. Instructions between branches are called runs. Run length 
distributions (in words) for the benchmarks are shown in Figure 4-17. These 
distributions assume a byte-encoded instruction set. The mean run length is 17 
bytes and the 95% quantile is 42 bytes. (A word encoded instruction set has a 
mean run length of 6 words and a 95% quantile of 16 words). Given the simple 
run length distribution, it doesn't pay to make d significantly greater than the 
mean run length. 

ID-rhe mapping is approximated in the following manner. A psuedo program-counter, Ph, is 
used to track the Lcode program-counter, P. For sequential execution, both P and Ph are 
incremented by the instruction size (in bytes). For branches, however, P = A and Ph = 
k* (A - codebot), where k<l is the ratio of byte-encoded program size to Lcode program 
size and codebot is the base address of the program. This mapping has the advantage that 
each domain maps into a single range. In addition, sequential instruction addresses are 
accurate. The mapping has the disadvantage that branch targets are inaccurate because of the 
inaccuracy of scaling. This inaccuracy slightly perturbs cache performance statistics because 
determining whether a target instruction is in the cache is dependent on where the branch is 
located. This perturbation is assumed to be minor because recursive loops usually branch from 
a fixed location, thus accurately branch to the same target. 
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The mean run length of 17 bytes for Prolog programs, with an average 
instruction size of 2.6 bytes (see Section 3.3.2), implies 6.5 instructions per run. 
To illustrate the high-level nature of the W AM instruction set, consider a 
comparison with the IBMl370. Huck [39] measured a mean run length of 16.9 
instructions for IBM/370 FORTRAN programs - over twice that of the W AM. 

In the instruction buffer model, hit ratio is not dependent on buffer size 
(branch targets contained in the buffer are not detected). Since traffic ratios 
increase with d, it would appear that the smallest buffer size (minimal d) of four 
bytes (approximately maximum instruction size) is best, but this is not always the 
case. As mentioned previously, hit ratios for small buffers can be inaccurate 
because certain factors, such as instruction execution time, are not taken into 
account. 

The mean hit ratio for the benchmarks is 0.82, with almost no variance (for 
the word encoded instruction set the mean hit ratio is 0.74). This result can be 
verified using an analytical approximation of hit ratio, (r-i)/r = 0.85, where the 
mean instruction length, i, is 2.6 bytes and the mean run length, r, is 17 bytes. 
This statistic represents the branch frequency as the ratio of sequential instruction 
bytes to total instruction bytes referenced. 

Figure 4-18 summarizes instruction buffer traffic ratios. Traffic ratio here is 
defined as the number of bytes fetched by the buffer divided by the number of 
bytes in the instruction stream. A system where memory transactions occur in 
units of buswidths (Le., physical words) may be forced to move more bytes than 
indicated in this definition of traffic ratio. The traffic ratio represents a best case 
estimate and other systems with physical words larger than a byte will likely 
have higher traffic ratios. 

The instruction buffer cannot have a traffic ratio of less than one because 
branch targets contained in the buffer are not detected. Because of the 
inaccuracy of hit ratios for small buffer sizes, the 12 byte buffer with traffic ratio 
of 1.8 is chosen for configuring data and instruction memories in Section 4.4. 

4.3.2. Instruction Caches 

The cache simulator models a cache with multiple word lines with a CPU 
issuing word requests. Such a model is tuned for data references, each a word in 
size; however, byte-encoded instructions consist of a variable number of bytes. 
The emulator rounds instruction byte addresses into word addresses during trace 
production. For example, a two byte instruction straddling a word boundary 
causes two word references in the trace. This method of trace production allows 
the use of the standard copyback cache simulator (Section 4.2.4) to colIect 
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Figure 4-18: Instruction Buffer Traffic Ratios 

instruction referencing statistics. With this method, however, hit and traffic ratio 
statistics must be carefully interpreted, as described below. 

In the system without a cache, the assumption is made that instructions are 
fetched independently with no buffering. For example, a word is fetched for a 
byte instruction, and extra bytes are ignored. Since there are no instruction 
writes, there is neither copyback nor write-through in an instruction cache. 
Therefore traffic ratio is 

tr = Rm*B I R, 

where, using the notation of Section 4.1, R is the number of CPU requests, Rm is 
the number of requests which miss in the cache, and B is the cache line size in 
bytes. 

In the data cache simulator, miss ratio is calculated as the number of (word) 
references missing in the cache over the total number of (word) references. An 
alternative definition is the number of bytes referenced missing in the cache over 
the total number of bytes referenced. For a data cache these two definitions are 
equivalent because all references fall on word boundaries. The alternative 
definition, although desirable for the instruction cache, cannot be calculated with 
the standard cache simulator because of the trace production method previously 
described. For a byte-encoded instruction stream, the two definitions produce 
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different results; however, the difference is expected to be small. I I 
Figures 4-19 and 4-20 show the hit and traffic ratios of an instruction cache. 

Instruction caches offer lower traffic ratios (and lower hit ratios) at the cost of 
larger sizes than the instruction buffer (shown in Figure 4-18). These 
performance curves can be understood as follows. The hit ratio increases and 
traffic ratio decreases with cache size because of the capturing of loops (c.f., the 
instruction buffer). Consider the points on the curves where traffic ratio is one, 
i.e., all words fetched into the cache are used once and only once. These points, 
for line sizes two and four, correspond directly to hit ratios of 0.50 and 0.75. 
Consider a general instruction stream, where the last instruction referenced fell 
within a given cache line. For a traffic ratio of one (where no information is 
reused), hit ratio is defined as follows. 

hr = Pr(next reference in line) 

= 1 - Pr(next reference not in line) 

= 1 - {Pr(branch) + Pr(not branch)*Pr(overruns line)}, 

where 

Pr(overruns line) = mean instr length / line length. 

The probability of a branch, Pr(branch), was measured as 0.17, the miss ratio of 
the instruction buffer in the previous section: 

Pr(branch) = 0.17 

llConsider a branch to a two byte instruction target not in the cache. Suppose the target 
instruction straddles a word boundary within a line. The method used here gives a miss ratio of 
0.5, whereas the alternative miss ratio is 1.0. This large error, of 100%, occurs only for branch 
targets which straddle word boundaries, and decreases in magnitude with increasing run length. 
Over the total program execution, this error is expected to be small, as is shown here. 

An upper bound on the expected error is calculated as follows. The maximum error of 100% 
is caused by a branch to a target straddling a word boundary within a line. Thus an upper bound 
of the expected error is equal to the probability of an error occurring. The probability of a 
branch, Pr(branch) = 0.17, was measured in the previous section as one in 6.5 instructions. The 
probability that a branch target straddles a word boundary within a line, assuming uniform 
distribution of branch targets, is Pr(straddle) = (m-I)(n-I)/4m, where m is the number of words 
per line and n is the number of bytes per branch target. Since (m-I)/m < I, 
Pr(straddle) < (n-I)/4. Using the instruction size distribution (Figure 3-11) as an approximation 
of branch target size distribution, Pr(straddle) < L Pr(n)*(n-I)/4 = 0.40. Therefore, 
E(error) < 1 *Pr(error) = Pr(branch) * Pr(straddle) = 0.07. Again, this upper bound of expected 
error is pessimistic because it assumes that each time an error occurs, the statistics are in error 
by the maximum of 100%. However, the error drops off rather quickly with increasing run 
length, so that this cache simulation model is certainly accurate to within 7%. 
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Pr(overruns 2 word line) = 2.6/8 = 0.325 

Pr(overruns 4 word line) = 2.6/16 = 0.163. 

Therefore hit ratios for these line sizes are estimated as 

hr2 = 1 - {0.17 + 0.83*0.325} = 0.56 

hr4 = 1 - {0.17 + 0.83*0.163} = 0.69. 

These correspond closely to the measured results. The previous analysis 
simplified the cache behavior to permit an analytical solution. In general, loops 
are captured in cache sizes both above and below the threshold of tr = 1. 
Branches cause the sequential instruction stream to be interrupted, causing 
portions of lines to never be referenced. These two effects balance at the 
threshold. Cache sizes below the threshold produce more traffic and lower hit 
ratios because fewer loops are captured. Cache sizes above this threshold 
produce less traffic and higher hit ratios because more loops are captured. 

Figure 4-21 shows the performance statistics of a combined instruction/data 
(liD) cache. Figure 4-22 shows the dirty line ratios of the liD caches. Note that 
the dirty line ratios are non-monotonic. In the liD cache, instructions fill the 
cache in such a way as to decrease the rate of change of miss ratio for small 
caches and increase the rate of change of miss ratio for larger caches. 

4.4. Local Memory Configurations 

In this section, several uniprocessor local memory configurations are 
presented. For each configuration, miss and traffic ratios for instruction and data 
are already known from local memory simulations. With the equations of 
Section 4.1, 

trd+i = trdP d + triPi' 
where Pd = 0.77 and Pi = 0.23, the probabilities of data and instruction 
references, respectively (see Section 3.2). 

The configurations considered are listed below (other configurations can be 
similarly calculated with the previous equations). Note that a combined liD 
cache captures both instructions and data, whereas split I+D caches consist of 
two caches: one for instructions, one for data . 

• liD cache (copyback with 4 word line) 
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• I+D caches (copyback with 4 word line) - instruction cache is one 
fourth data cache size. This is meant to approximate the mean 
instruction/data referencing ratio of the benchmarks, about 1 :3. 

• instruction buffer (3 words) and data cache (copyback with 4 word 
line) 

• instruction buffer (3 words) and stack buffer 

• instruction buffer (3 words) and choice point buffer 
Figures 4-23 and 4-24 show each configurations' hit and traffic ratios. For high 
performance systems (i.e., high hit ratio and low traffic ratio), the split I+D 
caches are best. As the configurations decrease in size, the split caches retain a 
traffic advantage; however, the I-buffer + D-cache configuration has superior hit 
ratios. This is because the look-ahead I-buffer has better hit performance than an 
I-cache. For lower performance systems, the stack buffer configuration is 
superior because cache traffic ratios rapidly increase with decreasing cache size. 
Note that a combined IJD cache requires less costly hardware than does a split 
I+D cache (although less than a 10% reduction in size for most VLSI 
implementations) however the latter offers twice the bandwidth to the CPU. 

The superiority of the split I+D caches over a combined IJD cache may not 
be expected because for traditional architectures large caches display the opposite 
behavior [75]. The result is not surprising, however, in the context of Prolog 
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executing on small caches. Prolog programs do not display as much locality as 
procedural languages, as indicated by the modest performance of the instruction 
caches analyzed in the previous section. This can be attributed to lack of tight 
loops. The long Prolog loops appear as sequential code to a small cache (note 
that within the loop, there may be branching from one run to another until the top 
of loop is re-encountered). Sequential instruction referencing has a devastating 
effect on the combined I/D cache. Sequential instruction fetching causes 
continuous replacement of data lines by code because of the LRU replacement 
policy. Yet the code lines have little or no temporal locality. Thus the program 
takes over a larger percentage of the combined cache than it can exploit as 
efficiently as the data. Note that the lID and I+D traffic ratio curves, in Figure 
4-24, possibly cross for cache sizes larger than those measured. This would 
indicate that for large caches Prolog behavior was conventional, similar to the 
traditional languages measured by Smith [75]. 

4.5. Main Memory Design 

In the remainder of this chapter, queueing models are used to determine the 
memory interleaving required to support the local memory configurations 
previously described. This analysis gives the appropriate interleaving to prevent 
the memory from becoming a performance bottleneck. The necessary memory 
queue length and the expected degradation of processor performance due to 
memory contention are calculated. 

The system model illustrated in Figure 4-1 consists of a uniprocessor CPU 
attached to an interleaved main memory by a single bus. The interleaved 
memory consists of m modules, each of which can deliver one physical word per 
access. The bus transmits a physical word in T bus' the bus cycle time. A 
physical word can be a multiple number of 32-bit words. Each module can 
deliver a physical word in Ta cycles, the memory access time. The modules can 
be reaccessed after at least Tc cycles, the memory cycle time. 

The CPU model used in the remainder of this book is based on the PLM 
[21,20], a W AM instruction set processor. Relevant aspects of the PLM (not to 

be confused with the PLM benchmark) are reviewed below. For a complete 
description of the PLM, see Dobry [23]. Differences between the CPU model 
used here and the actual PLM are due to assumptions regarding timing and the 
memory design. The PLM timing equations described by Dobry [21] have been 
augmented here with timings for built-ins, derived by Mulder [54]. To the first 
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order, the two models have approximately the same execution performance, 
assuming a one cycle main memory. The queueing models presented in this 
section can be used to estimate the performance of other types of processors, e.g., 
PSI-II and SPUR. These processors can be modeled by approximating the 
queueing model parameters relative to the PLM. Local data memory behavior 
for these models can be assumed to be the same. Local instruction memory 
behavior might be derived, for instance, from the data presented by Borriello et. 
al. [8]. 

The PLM memory design is not of concern here because the memory models 
previously introduced, e.g., an liD cache, are used instead. A queueing model is 
developed in anticipation of its essential role in analyzing multiprocessor 
performance (Section 5.4.1). The model is also used to analyze simple 
uniprocessors because time is reintroduced, permitting the calculation of 
statistics, such as performance degradation and bandwidth efficiency, not 
previously obtainable with the simple model of previous sections. Because read 
and write requests are issued independently of service time, the requests can 
freely contend for the memory modules of an interleaved memory. In addition, a 
heuristic is added to the queueing model to approximate the effect of a read miss 
stalling the CPU until the target word is delivered. This heuristic is described in 
greater detail in Section 4.5.3. 

In the next section, the general queueing models are introduced. From these 
general models, models of interest can be easily derived. Two such main 
memory queueing models are presented in the following sections. The first 
assumes a local memory which is a traditional liD copy back cache. The second 
assumes a local memory which is a stack and instruction buffer configuration. 

4.5.1. General Queueing Model 

Two general queueing models are introduced in this section: an open model 
and a closed or asymptotic model. The open model, although unrealistic because 
its arrival and service rates are independent, is useful for motivating the closed 
model. The closed model is more realistic because its arrival and service rates 
are equal, i.e., it is in the steady-state. 

The open queueing model consists of a CPU which generates requests 
independently of a memory which services the requests. The request rate is A 
and the service rate is Il. The ratio /J1l, called the occupancy, p, must be 
significantly less than one for the open queue model to be accurate. 

Analytical solutions exist for certain Markovian processes, e.g., Poisson 
arrival times and exponential service times. The M/DIl model assumes a 



www.manaraa.com

140 MEMORY PERFORMANCE OF PROLOG ARCHrrECfURES 

Poisson arrival distribution (M for Markovian) and a server (1 for single) with a 
constant service time (D for deterministic). Arrivals are queued in an infinite 
size buffer and served on a first-in first-out (FIFO) basis. The MlD/l model 
corresponds to a single CPU issuing requests as a Poisson process and an 
interleaved memory system of n modules, each of which has a constant cycle 
time, T C' and a queue for waiting requests. The single server in this model is a 
single memory module, the assumption being that each module in the system will 
act accordingly. 

There are two basic statistics of interest for designing an interleaved 
memory. 0: is the expected number of requests queued per module not including 
the one in service (Q is the expected number of requests queued per module). 
T' w is the expected time waiting in queue not including the time spent in the 
server. Solutions for these statistics are [43, p.l88-l9l]: 

Q' = p2/2(1-p) (4.1) 

Q = p + p2/2(I-p) = P + Q' 

T' w = (lIA)*p2/2(l-p) = Q'/A. 

(4.2) 

(4.3) 

The design of the interleaved memory has been reduced to a problem of 
accurately determining A and J.l. The accuracy of determining these rates varies 
with the complexity of the model. As outlined in the previous chapter, a local 
memory between the CPU and main memory will filter the requests. In addition, 
a local memory with a complex replacement scheme, possibly based on explicit 
control by instructions, will add its own requests. These two effects alter the 
arrival rate. When various sized objects are transmitted between the local 
memory and main memory, the service rate is altered. 

The degree of memory interleaving is determined by first calculating the 
processor's peak sustainable memory request rate, Ap. The memory is designed 
around a peak rate because at burst speeds, the memory should not slow down 
the processor. A sustained peak rate is used to avoid overdesigning the memory; 
however, the definition of "sustained" is difficult to pinpoint. For scientific code, 
often a "typical" inner-loop, e.g., matrix multiply, is used to represent the peak 
sustainable rate. The analogous Prolog artificial benchmark is determinate 
append/3 (see Figure 2-2). The benchmark append/3, however, does not 
use the stack and thus does not generate a peak request rate. Ideally, an artificial 
burst benchmark is not what is desired - a measurement of the bursty portions 
of a large benchmark is more realistic. 

To measure ~ the PLM timing model [21] is used. The PLM timing 
equations assume a one cycle memory, i.e., that read requests are serviced in one 
cycle. This assumption is legitimate for peak request rate calculations. Although 
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cycles 
U 
KLIPSt 

CHAT 
4120845 

47677 
116 

PLM 
4530539 

54694 
121 

t assuming 100 nsec cycle 

QCl 
4840096 

42489 
88 

Table 4-1: PLM Timings 

ILl 
2127167 

23789 
112 
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an instruction may need to wait for a read request to be serviced, counting the 
request as a single cycle gives a pessimistic peak: rate, for a conservative memory 
design. Table 4-1 shows the PLM cycles and number of logical inferences (U) 
for the benchmarks studied. A logical inference is calculated as a user-defined or 
built-in procedure call. Performance in terms of thousands of logical inferences 
per second (KLIPS) is given, assuming a 100 nsec cycle. Note that to achieve 
one application MLIPS performance with PLMs, about 8-10 processors are 
necessary. Each processor runs at about 100 KLIPS or 1.5 MIPS. 

The PLM timing equations, augmented with timings derived for built-ins 
[54], were combined with mean reference counts per instruction, to give the 

mean request rate per instruction. This method is accurate because for a given 
instruction, cycles per instruction and references per instruction are both 
calculated as averages over the benchmarks. Thus the ratio, corresponding to the 
request rate, is independent of the mean, i.e., is a valid peak: rate. The unknown 
factor is how the instructions combine into a burst rate. To calculate this, a 
moving windowed average of the rate is calculated with varying window sizes. 
The maximum is calculated to get an approximation of the sustained peak: rate. 
Of course, window size affects the calculated rate. A window of one instruction 
is an upper bound. An infinite window size indicates an average rate for the 
entire program, a lower bound. Figure 4-25 shows the mean (over the 
benchmarks) peak: sustainable memory request rate as a function of window size. 
Ap = 0.6 words/cycle was chosen for the calculations of this chapter. For a large 
window, Abase = 0.46 words/cycle, corresponding to the average request rate. 
Note that the CPU issues word requests, although the main memory delivers only 
physical words. 

Again with the statistics from Section 3.2, 

Ap = Ai + Ad 

1, = Ap *u/u = 0.6*0.23 = 0.138 words/cycle 

Ad = Ap *ud/u = 0.6*0.77 = 0.462 words/cycle, 
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Figure 4-25: Mean Peak Sustainable Request Arrival Rate 

where ~ and Ad are the instruction word and data word request rates, 
respectively. In this and subsequent queueing models, the average (over the 
benchmarks) statistics presented in Chapters 3 and 4 are used as input 
parameters. Several of these statistics have high variances with respect to the 
benchmarks andlor the W AM instructions. It should be noted that these 
variances reduce the accuracy of the queueing model results. 

Assuming a simple model of a uniprocessor and main memory, the memory 
interleaving (number of modules) and module queue size can be calculated with 
the Flores model [28]. This gives a conservative approximation and sanity check 
for later calculations using more complex models. The Flores model assumes 
that the processor request stream splits evenly across the m memory modules, 

A='Vm 

~ = lITe 

p = AJ~ = ApTc/m. 

For ease of addressing a module, m is usually chosen to be a power of two, i.e., 
m = 2k for some integer k. With these parameters, Q' and T' w can be calculated 
with Equations (4.1) and (4.3). 

The asymptotic queueing model [28], is now described. This model permits 
more accurate formulations of the statistics of interest. It will also be shown how 
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these and additional statistics, such as bandwidth efficiency, can be expressed in 
tenns of the open model occupancy and the asymptotic model occupancy, 
helping the intuition. The asymptotic model represents a closed or steady-state 
queueing system, i.e., where the arrival and service (departure) rates are equal. 
This model more accurately approximates a real system, where, in contrast to the 
previous open queueing system, the occupancy, p, cannot approach arbitrarily 
close to one. Consider a memory system of m modules. The offered bandwidth, 
Bo' is defined as the average number of customers (requests) arriving (in the 
steady state) during one memory cycle, Te' Note that these "arrivals" may be 
from the memory queue. 

Bo = ApTe· 
Assuming unifonn distribution of requests over modules, by the steady-state 
assumption, the average number of requests at each module will then be 

Q = Bolm = ApTe/m = ("-p/m)Te = AlIl = p. 
With the MiDll solution (Equation (4.2», 

Q = Pa + Pa2/2(1-Pa)' 

where Pa is the asymptotic occupancy. Equating these two solutions and solving 
for Pa, 

Pa = 1 + P - (p2 + 1)112, 

The achieved bandwidth, Ba, is defined as the average number of requests 
serviced each memory cycle. Note that since the model is in the steady state, Ba 
is also the outside arrival rate, i.e., the average number of requests arriving from 
the CPU each memory cycle. Ba is also the average number of modules busy 
during the memory cycle, 

Ba = mpa· 

The bandwidth efficiency, ~, is defined as the ratio of achieved to offered 
bandwidth, 

~ = BalBo = mPaiApTe = Pa/p, 0 $ ~ $ 1. (4.4) 

Thus the bandwidth efficiency12 can be easily calculated as the ratio of the 
asymptotic occupancy to the occupancy of the open queueing model. The 
efficiency is thefraction of the bandwidth required by the system, supplied by the 
memory. 

12The limits on ~ are derived as follows. ~ = pip ;?: 0 is trivially true because P'Pa ;?: O. Also, 
P ;?: 0 <=> (1 + p)1I2 ;?: 1 <=> (1 + p)1I2 ;?: 1 + P - P <=> 1 + P - (l + p)li2 ~ P <=> Pa ~ p <=> 
~ = pip ~ 1. 
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Figure 4-26: Flores Model O"p = 0.6) 

Consider the steady state behavior of the system at a microscopic level. 
Assume that (Bo-Ba) customers are enqueued, waiting for service at the start of a 
memory cycle, T c' Over the memory cycle, Ba new customers arrive from the 
CPU, giving Bo total requests. Ba customers are serviced, leaving a different 
(Bo-Ba) customers waiting. Thus in the steady state, (Bo-Ba) customers are 
always waiting, 

Q' = (Bo - Ba)/m = Bolm - Balm = P - Pa 

T' w = Q'/Ap = (p - Pa)/A.p· 

Note that both the open and closed models can be formulated in terms of the 
effective memory cycle time, Te = Tdm. Te represents using the interleaved 
modules in a pipelined fashion. Therefore, in these simple models, performance 
can be improved by either decreasing the memory cycle time or increasing the 
number of modules, with equal effectiveness. Note that in a real system, because 
of other constraints, performance cannot be improved indefinitely by increasing 
the number of modules. Figure 4-26 compares the open and closed queueing 
models. The occupancies, expected waiting times, and bandwidth efficiency are 
plotted as functions of T e' 

For lightly loaded systems, both models give similar results. As the system 
organization degrades with increasing Te, the open model saturates (p 
approaches one), but the closed model does not. The closed model stays 



www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS 145 

saturation by achieving less bandwidth than the open model - this is indicated 
by the decreasing bandwidth efficiency, S, with increasing Te' The open model 
guarantees delivery of bandwidth equal to the arrival rate of ", words/cycle, the 
offered bandwidth. To achieve this under saturated conditions, it requires long 
queues and delays. The closed model is self-regulatory in the sense that it cannot 
deliver impossibly high bandwidths with an inferior system (high T e)' It 
achieves less bandwidth, Ba, with shorter queues and delays. The closed model 
is considered more realistic precisely for this reason - a real system cannot 
tolerate excessive delays necessary to achieve high bandwidth, and will issue 
memory requests at a lower rate as delays cause feedback. The closed model is 
used throughout the remainder of the book. 

4.5.2. Memory Bus Model 

A memory bus can also be modeled, as an independent system resource, with 
the Flores model: 

Abus = Ap 

I1bus = liT bus 

Pbus = Abu/l1bus' 

The asymptotic model is derived as in the previous section with m = 1, 

Bo = AbusTbus = Pbus 

Ba = mPa = Pa = 1 + Pbus - (Pbus2+1)112 

Sbus = piPbus' 

Unless efficiency is high, i.e., occupancy is low, the bus will bottleneck the 
memory system, no matter what degree of interleaving is provided. As seen from 
the equations, a fast enough bus will avoid this problem. For local memory 
models transferring blocks an alternative is to increase the width of the bus, up to 
block size. 
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4.5.3. Copyback 110 Cache System 

The model presented here, based on that given by Flynn [28], is a 
uniprocessor attached to a copyback cache (Section 4.2.4). The copyback cache 
uses write-allocate strategy wherein both read and write misses cause fetching of 
the target. The cache is line (block) oriented, i.e., all transfers to/from main 
memory are line transfers. The cache fetches a line on demand with fetch-bypass 
and wrap-around load. Fetch-bypass delivers the target line directly to the 
processor from memory while the cache is concurrently loaded. Wrap-around 
load delivers the target word within the line directly to the processor. Buffers are 
assumed, to allow simultaneous transfer of a dirty line from the cache and the 
target line from memory. 

Transferring a line to/from the cache involves a delay, Tline, defined as 

Tline = max(Ta + (L-I)TbUS'Tc)' 

where L is the line size in units of buswidths, and T bus is a single bus transfer 
time. The max is used to ensure that service cannot complete until after one 
memory cycle. The T a term represents waiting for the target word within the 
line, and the (L-I)T bus term represents transferring the remaining portion of the 
line in burst mode (pipelined) fashion. The major assumption being made here is 
that the memory interleaving factor, m, is greater than or equal to L. For the 
uniprocessor model, there is no advantage to making m greater than L, because 
the extra modules cannot decrease Tline. 

The cache request rate is approximated with two streams: Al and~. The 
first stream represents requests that do not stall the processor. The second stream 
represents requests that do stall the processor. 

Al = "'-w *MRw + Ap *MR*DR 

~ = A/MRr 

TI = Tline 

T2 = TUne - Tdead 

Tdead "" Ta 
These two streams are combined with an MlG/1 queueing model: 

A = Al + A2 

T = (AI /A)T 1 + (A2/A)T 2 

J.l = liT 

(4.5) 

(4.6) 

(4.7) 
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(4.8) 

In the above equations, MR is the miss ratio of the local memory, split into MRr, 

the read miss ratio and MRw' the write miss ratio. DR, the dirty line ratio, is the 
ratio of dirty to clean lines replaced. Values of these statistics are given earlier in 
this chapter (Figures 4-22 and 4-23). These values, with corresponding line and 
cache sizes, are used as input parameters to the queueing models. The input 
request stream, Ap' is split into Ar. the read miss requests, and Aw, the write miss 
requests. 110 is not modeled in this or subsequent formulations, although it can 
be easily be included [28]. 

The Tdead term is a heuristic which indicates that requests will not arrive at 
the memory while the processor is waiting for the target word of a read miss, i.e., 
during the T a delay. In this and subsequent models, T dead is thus approximated 
as T a. Consider the arrival of requests on a time line. A gap appears during the 
T a delay, when no arrivals will occur. However, the simple queueing models 
used assume independent arrival and service rates. The effect of a decreased 
arrival rate is approximated by increasing the service rate. Note that although 
write-allocation is assumed, it is also assumed that the CPU need not wait for a 
write miss request to be serviced. 

An MlG/I asymptotic model [28] is similar to the MlD/l asymptotic model 
of the previous section. Consider a memory system of m modules as a single 
server. By the steady-state assumption, the average queue size is 

Q=AT=A1T1 +AzT2 =p, O:S;Q,p:S;l. 
Using the Pollaczek-Khinchine solution [43, p.187], 

Q = Pa + p/(1+C2)!2(1-Pa), 

where Pa is the asymptotic occupancy. Solving, 

Pa = (1 + P - (p2+2C2p+l)1I2)/(I_C2). (4.9) 
The statistics of interest, T' wand Q', are derived from the asymptotic occupancy, 
using the standard MlG/I solutions, 

Q' = Pa2(1+C2)/2(1-Pa) (4.10) 

T' w = Q'/A, (4.11) 

where C2, the coefficient of variation, is 

C2 = (A1/A)(1-T 1/T)2+(Az/A)(1-T2/T)2, O:S; C2:s; 1. 

The memory bandwidth efficiency, ~mem' is derived in a manner similar to 
Equation (4.4), 

~mem = Pa/p. (4.12) 

The degradation of uniprocessor performance due to main memory 
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contention is now calculated. To simplify the equations, processor performance 
is measured in units of cycles per instruction (the inverse of the conventional 
definition). Degraded typical performance is measured rather than degraded 
peak performance. Recall from Figure 4-25 that the average memory request rate 
is Abase = 0.46 words/cycle. Recall from Section 3.2 that the average request rate 
per instruction is U = 3.0 words/instr. Therefore the average processor 
performance, Pbase' is 

Pbase = U/Abase = (3.0 ref/instr)/(0.46 ref/cycle) 

= 6.5 cycles/instr. 

For a 100 nsec cycle PLM, this corresponds to an execution rate of about 1.5 
MIPS. The performance of a processor assuming no misses, P no-miss' is now 
calculated. 

P no-miss = Pbase + Pbranch' 
where Pbranch is the branch penalty in cycles/instr, 

Pbranch = Pr(uncond)T uncond+Pr(cond)T cond+Pr(micro)T micro· 
Unconditional branches are instructions such as call, execute, and try. 
Conditional branches are instructions such as switch constant and 
switch_term. The fail operation and escape instructions are categorized 
as micro branches, because although they do not appear in the image 
architecture, they may still evoke a penalty, depending on implementation. From 
Section 4.3.1, Pr(branch)=0.17 on average. CHAT presents statistics close to the 
mean and is therefore used to estimate Pbranch. For CHAT, Pr(uncond)=O.l1, 
Pr(cond)=0.04 and Pr(micro)=0.04. Assume that Tuncond=1 cycle, Tcond=2 
cycles, and Tmicro=1 cycle. Therefore, assuming no cache misses, 

Pbranch = 0.11 * 1 + 0.04*2 + 0.04* 1 = 0.23 cycles/instr 

P no-miss = 6.5 + 0.23 = 6.73 cycles/instr. 

Actual processor performance, P actual' accounts for misses. 

P actual = P no-miss + P miSS' 
where P miss' the miss penalty in cycles/instr, is 

P miss = T access *Ur *MRr· 
Recall from Section 3.2 that the average read request rate per instruction is 
u r = 1.6 words/instr. When calculating the miss penalty, only read misses are 
considered because of the previous assumption that only read misses stall the 
processor. The expected miss delay, T access' is 

Taccess = Ta + T'w' 

where T a is the memory access time and T' w is the previously defined expected 
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waiting time. Degradation, D, is the fraction of ideal processor performance 
(assuming an infmite local memory) lost due to local memory misses in an actual 
processor (with a finite local memory). In the following definition of D, recall 
that performance is defined inversely to standard definitions. 

D=(Pactual-Pno-miss)lPactual' O~D~1. (4.13) 
A bus model for this system is derived as in Section 4.5.2, with 

Abus = ~ *MR*(I+DR)*L. 
This bus model assumes that addresses issued for read requests do not require a 
separate bus cycle. The bus bandwidth efficiency, ;bus' is the fraction of the 
bandwidth required by shared memory and the processing elements, supplied by 
a single shared bus. Recall that the bandwidth efficiency, ~mem' is the fraction of 
the bandwidth required by the processing elements, supplied by the shared 
memory, assuming an ideal bus, i.e., ;bus = 1. These statistics are related to PE 
performance because reduction in bandwidth efficiency implies reduction in the 
bandwidth offered, which is approximately proportional to the rate at which the 
PEs execute instructions. The efficiency statistics are not combined with 
performance degradation, D, so that the effects can be viewed separately. 

Figures 4-27 and 4-28 show the queueing model measurements for a 
selection of the lID caches analyzed in Section 4.3.2. Shown are bus bandwidth 
efficiency, main memory bandwidth efficiency, and percent performance 
degradation, plotted as functions of cache size. Figure 4-27 assumes a two word 
bus, Figure 4-28 a one word bus. Sufficient interleaving to transmit cache lines 
in a single burst (m ~ line-size/buswidth) is assumed throughout. Other 
implementation assumptions used are T bus=l cycle, T a=3 cycles, and T c=5 
cycles. 

Recall from the previous queueing model descriptions that main memory 
efficiency and processor degradation are modeled together, independently from 
bus efficiency. The decoupled models allow separate views of bus and 
interleaved memory performance. The main memory efficiency and processor 
degradation models assume that the bus achieves the full bandwidth supplied by 
the processor. 

The results from Figure 4-27 indicate that with sufficient interleaving 
(implicit in the model) and enough bus capacity (speed and/or bus width), large 
block sizes produce the least performance degradation and achieve the most 
memory bandwidth. For a given cache size, as block size decreases these metrics 
degrade slowly at first, then rapidly. The queueing model favors large blocks as 
long as the cache is large enough to generate correspondingly low miss ratios. 
Miss ratios fail to decrease significantly with increasing block size, for a certain 
minimal cache size (see Figure 4-10). In these benchmarks, this happens for a 64 
word cache. 
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The queueing model, however, does not indicate that the traffic has been 
decreased by the interleaved memory. The bus bandwidth efficiency is best for 
small lines. Bus traffic increases with line size because the decrease in miss ratio 
afforded by large lines does not outweigh the cost of transferring larger lines. 
Since bus traffic and therefore occupancy increases with line size, bus bandwidth 
efficiency decreases, i.e., the bandwidth achieved by the bus becomes 
proportionally smaller than the bandwidth required by the system. 

These results should be considered a refinement of the conclusions reached 
in Section 4.2.4. Previously, miss and traffic ratios were used to compare 
different caches. The conclusion was that medium sized (four word) blocks 
produce the best tradeoff between miss and traffic ratio. Similarly, the queueing 
model presents a tradeoff between the bus bandwidth efficiency vs. memory 
bandwidth efficiency (and processor degradation). Again, medium sized blocks 
appear to display the best characteristics. 

Figure 4-28, when compared with Figure 4-27, illustrates that in a system 
with a one word bus, eight word blocks lose much of their advantage over 
smaller blocks. In the one word bus system, bus efficiency degrades more 
rapidly with increasing block size. The main memory efficiency also degrades 
significantly for large blocks in the one word bus system. Note that in the 
models of Figures 4-27 and 4-28, the values of T bus and Teare such that the 
memory efficiency and performance degradation of two word block caches do 
not change. This happens because the advantages of burst mode transfer are 
minimal for these parameters. This comparison serves to illustrate a more 
general trend in the queueing equations: all the metrics will degrade with 
decreasing bus capacity; however, smaller blocks will cause less degradation. 

4.5.4. Stack and Instruction Buffer System 

In this section, a stack buffer model (Section 4.2.2) and instruction buffer 
model (Section 4.3.1) are described. The two models are then combined. The 
data buffer can be either a choice point buffer, stack buffer or E-stack buffer, 
since all are managed in a similar manner. Instructions which allocate an object 
may copyback a dirty portion of the buffer to make room for the new object. 
This operation is preallocation, but not prefetch, i.e., objects are never read in 
from memory. Other instructions manipulate the top of stack, possibly 
invalidating the buffer, but this never requires copyback. Memory references to 
the valid portion of the buffer are serviced from the buffer, whereas other 
references are serviced from memory. However, buffer misses never imply 
replacement or copyback. 
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A stack buffer model similar to that of a write-through cache [28] is used. 
Management is modeled with three arrival rates: read misses \miss' write misses 
Awmiss' and copyback requests Acopy. Misses reference a single word. 
Preallocation instructions copyback a variable sized block. Write misses and 
copyback requests are combined into a single stream, AI' with a service time T l' 
The effect of memory interleaving is modeled by reducing the Al arrival rate by 
the interleaving factor, m. The valid range of m in the model is constrained by 
the number of outstanding write misses and copybacks that the processor can 
sustain. In the previous cache model, m does not appear explicitly, and is 
inherently constrained to retain validity. Read misses form a separate stream, '-2, 
with service time T 2' These arrival rates and service times can be combined with 
an M/O/l model (Equations (4.5)-(4.8)): 

where 

Al = (Awmiss + L *Acopy)/m 

A,2 = Anniss 

TI =Tc 

T2 = Tc - Tdead 

Tdead"" Ta, 

Amiss = Ad*MRd = Anniss + Awmiss 

Acopy = Ad*PR, 
for stack buffer miss ratio, MRd, prefetch ratio (ratio of preallocation instructions 
to memory references), PR, and average copyback block size (in words), L. 
Anniss and Awmiss are calculated with read and write stack buffer miss ratios. 
Note that MRd and L are dependent, whereas PR is independent, of buffer size. 
The T dead term in T 2 is introduced for the same reason as in the cache model of 
the previous section. Recall that the T dead heuristic models feedback within the 
queueing equations, to approximate the behavior wherein the processor stops 
issuing requests between issuing a data read miss and receiving the result. 

This model lumps copyback in the arrival rate, treating all requests 
independently. L is measured in units of words (stack buffer entries), rather than 
buswidths. Buswidths would be more accurate, and somewhat lower, if the bus 
is wider than one word. A line oriented stack buffer would permit splitting the 
model into a system where a copyback service time, T COPY' would assume 
pipelined transfer of lines (as in copyback cache model). Line oriented buffers 
are not modeled in this book. 

The calculation of Acopy is made by determining the ratio of preallocation 
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instructions (allocate, try, try_me_else) to memory requests. The 
assumption implicit in this calculation is that the preallocation instructions are 
infrequent, so that the peak sustainable rate is approximately the same as the 
mean rate over the benchmark programs. 

A look-ahead instruction buffer model, independent of the previous stack 
buffer model, is now described. Recall that the instruction buffer has a traffic 
ratio greater than one. Here, a memory module is described with two arrival 
rates and service times corresponding to two types of events: sequential 
instruction execution and taken branches. All instruction references cause 
prefetching of new instruction words of equal size. A taken branch, however, 
indicates a miss in the buffer, causing the prefetching of an entire buffer, d 
buswidths in size. These arrival rates and service times are combined with an 
MlG/1 model: 

Al = Aim 

1.2 = t,*MRi 

TI =Tc 

T2 = Tline = max(Ta+(d-l)Tbus,Tc)' 
where Ai is the instruction word request rate and ~ is the instruction buffer 
miss ratio. For instruction prefetching, T dead is not appropriate in T 2 because the 
processor does not stall. Assumptions made above are that the instruction 
requests are distributed uniformly across the modules and that the buffer size, 
d$m. 

The model of a stack buffer configured with an instruction buffer can be 
simplified by assuming that T 2",0 in the stack buffer model. The streams of each 
are then combined with an M/G/l model: 

Al = (Awmiss + L * Acopy + t,)/m 

1.2= AtMRi 

TI =Tc 

T2 = Tline = max(Ta+(d-l)Tbus,Tc) 

An MlG/l asymptotic model for the stack buffer configuration is similar to that 
of the previous section. A bus for this system is modeled as in Section 4.5.2, 
with 

Abus = Amiss + L*Acopy + Ai + Ai*~*d. 
Figures 4-29 and 4-30 show the stack buffer configuration queueing model 

measurements. Percent processor degradation and bandwidth efficiency are 
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Figure 4-29: Stack Buffer Configuration: Performance Degradation 
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plotted as functions of stack size. A set of curves is shown corresponding to 
different interleaving factors. It is assumed that each buffer is configured with a 
three word instruction buffer. A one word bus with T bus= I cycle, T c=5 cycles, 
and T a=3 cycles is also assumed. For stack buffers, a mean PR=0.028 and L=6.8 
words have been calculated across the benchmarks. The value of PR justifies the 
previous assumption that a peak allocation rate is not necessary. Figure 4-30 
includes two curves for bus efficiency, ~bus' corresponding to Tbus=l cycle and 
Tbus=0.5 cycles. 

Note that performance degradation for the stack buffer configuration is 
calculated with respect to the ideal performance of a processor with a local 
memory of unlimited size. Alternatively, degradation can be calculated with 
respect to the ideal performance of a processor with a stack buffer of unlimited 
size (increasing the size of the look-ahead instruction buffer will not significantly 
improve its performance). It is useful, however, to calibrate all degradation 
statistics with respect to a single baseline. 

Figure 4-29 indicates that degradation decreases with increasing stack buffer 
size and interleaving factors. The rate of improvement decreases, however. This 
implies that a cost-performance optimum may be reached with mid-size buffers. 
The precise optimum depends on how cost increases with buffer size and 
interleaving factor, a function of technology. For instance, a 128-word stack 
buffer with an 8-way interleaved main memory may have the best cost
performance. 

The bus efficiency for Tbus=l is rather low, falling between the 4-way and 
8-way memory efficiencies. To avoid bus saturation, the bus capacity should be 
increased, by increasing the bus speed or width. As shown in Figure 4-30, by 
increasing the bus speed by a factor of two (Tbus=0.5) the bus efficiency jumps 
from about 0.78 to 0.88 for 256 word buffers. If bus capacity is increased by 
widening the bus, stack buffer entry size should be made equal to (or larger than) 
bus width to exploit the increased capacity. In such a case, multiple word stack 
buffer entries may be an improvement in a VLSI implementation. If the bus 
capacity is not increased, over-designing the main memory should be avoided 
under these conditions. The memory need only be designed to handle the 
75%-80% of the bandwidth offered by the processor, achieved by the bus. A 
4-way interleaved memory is likely to be sufficient in this situation. 
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4.6. Summary 

In this chapter, two-level memory hierarchies are defined for sequential 
Prolog architectures. The memory model consists of a fast local memory and a 
slower, larger interleaved main memory. Recall that in the previous chapter, 
architecture memory-referencing characteristics are based on the zeroth-order 
statistic of the number of memory references made. The local memory 
performance measurements presented in this chapter are based on first-order 
statistics such as traffic ratio. The interleaved memory performance statistics 
presented at the end of this chapter are based on the higher-order statistics of 
miss penalty, performance degradation, and bandwidth efficiency. This 
progression of refinement in the models allows increasingly detailed analysis of 
the referencing behavior of Prolog programs executing on complex hosts. 

Several local memory. models are presented in order of increasing 
performance, cost, and generality. Envisioning a single chip microprocessor, the 
local memories considered are small (up to 1024 32-bit words). Initially, only 
data referencing is considered. At the low end, a single choice point buffer as 
small as 12 words offers a miss ratio of 0.55 and a traffic ratio of 0.62. A stack 
buffer of only 64 words offers a miss ratio of 0.28 and a traffic ratio of 0.30. The 
stack buffer, more complex than the choice point buffer, captures both choice 
point and environment references. A copyback cache, capturing all types of 
references, does better still - a 256 word cache (with four word lines) offers a 
miss ratio of 0.05 and a traffic ratio of 0.23. At the high end, smart caches, 
which avoid transferring lines no longer in a valid storage area, reduce the cache 
traffic ratio by up to 30%. 

Local memories for instruction references are also analyzed. Measurements 
of both instruction buffers and caches are presented, allowing comparison of 
alternative local (instruction + data) memory configurations. At the low end, the 
stack buffer configuration offers better memory performance than the caches 
because cache traffic increases rapidly with decreasing cache size. At the high 
end, split 1+0 caches display the best memory performance; however, the trend 
indicates that for larger caches, the combined lID cache might achieve equal 
performance. Although the combined liD cache is slightly less costly to 
implement in VLSI than a split 1+0 cache, the latter offers twice the bandwidth 
to the CPU. 

These results clarify the discussion in Chapter 2 concerning the relationship 
between the traditional and register-based CIFs. As is indicated in this chapter, 
caches, which capture all types of references, offer greater reduction in memory 
traffic and higher hit ratios than stack buffers. At little extra cost, a cache-based 
host may implement a small, fast register set. Such hosts are expected to gain 
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little advantage with the traditional CIF as compared to the register-based CIF 
(some reduction in instruction bandwidth can be expected - as much as 16% as 
is shown in Chapter 3). Thus the W AM, a register-based DCA, is seen to be 
well-suited for realistic Prolog hosts. In fact, the W AM also performs quite well 
on a host with a stack buffer (and register set), as is shown in this chapter. These 
results do not preclude the superiority of a traditional-CIF DCA for other types of 
hosts, e.g., a host with only a large stack buffer. 

The second-level main memory and memory bus are analyzed with 
asymptotic MlGll queueing models, for alternative local memory configurations. 
Queueing models are beneficial primarily because they reintroduce time into the 
previous local memory models, allowing the calculation of second-order 
statistics, such as miss penalty. The queueing models are driven with a peak 
sustainable memory request rate corresponding to a W AM processor with an 
average execution rate of approximately 100 application KLIPS. This peak 
request rate parameter is calculated in the emulator with the PLM timings [21], 
assuming a 100 nsec cycle time and one cycle memory latency. In the 
uniprocessor organizations considered in this chapter, main memory and bus 
performance are characterized with statistics for performance degradation and 
bandwidth efficiency (the fraction of the bandwidth required by the system, 
supplied by the memory or bus). The main memory and bus are modeled 
independently to allow separate views of the system components. Alternatively, 
the queueing models could be coupled to produce a single metric of system 
performance. 

Both a combined 110 cache configuration and a stack buffer + instruction 
buffer configuration are analyzed. For the 110 cache, memory bandwidth 
efficiency is maximized with large cache blocks. Bus bandwidth efficiency, 
however, is maximized with small cache blocks. These results support the 
previous first-order statistical results, indicating that medium size (four word) 
blocks appear to display the best tradeoff of characteristics. The selection of 
block size is also shown to be dependent on bus width. In general, with 
decreasing bus capacity, small blocks cause the performance and efficiency 
metrics to degrade more slowly than do large blocks. 

For the stack buffer configuration, main memory bandwidth efficiency 
improves with increasing interleaving. In contrast to the cache configuration, 
where interleaving is implicitly limited by block size, the stack buffer 
configuration can take advantage of larger interleaving factors. This is because 
the stack buffer is managed by copying-back groups of stack entries. Copybacks, 
write misses, and instruction read requests are assumed to be uniformly 
distributed across the memory modules. Large interleaving factors offer the 
stack buffer configuration greater memory bandwidth efficiencies than the cache 
configuration, for approximately equal size local memories. 
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The bus efficiency of the stack buffer configuration is somewhat inferior to 
that of the cache configuration. For equal capacity buses and local memory 
sizes, the 256 word stack buffer configuration bus efficiency falls between the 
bus efficiencies for the four and eight word block cache configurations. The 
stack buffer configuration bus efficiency does not significantly improve with 
increasing local memory size, as in the cache configuration. These results can be 
attributed to the higher miss ratios of the stack buffer and the look-ahead 
instruction buffer as compared to the liD cache miss ratio. As discussed, the 
stack buffer is limited by capturing only stack references, and the look-ahead 
instruction buffer is limited by the branch frequency. In contrast, the IJD cache 
captures all reference types and can also capture loops. 

The performance degradation of the stack buffer configuration, calculated 
with respect to the same baseline as the cache configuration, is significantly 
higher than that of the cache configuration. The minimal achievable performance 
degradation is constrained primarily by the previously mentioned high miss ratio 
of the stack buffer configuration. For instance, with 16-way interleaving, the 
benchmarks measurements indicate a minimal limit of about 25% degradation. 
In comparison, even a 256 word liD cache configuration (with four word blocks 
and one word bus, implying 4-way interleaving) can achieve about half this 
degradation. Large caches achieve less than 5% performance degradation. 

In the next chapter, similar analysis and performance measurements are 
given for parallel Prolog executing on shared memory multiprocessors. The 
difficulties encountered in extending the models of this chapter to a 
multiprocessor include both memory design (e.g., how to efficiently maintain 
consistency in a two-level hierarchy) and memory analysis (e.g., how to 
accurately represent mUltiple processing elements within a simple queueing 
model). 
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5 Multiprocessor Memory Organizations 

In this chapter, two-level memory hierarchies are defined and analyzed for 
the Restricted AND-Parallel Prolog (PW AM) architecture (reviewed in Section 
2.3). PW AM is chosen for study in this book for several reasons. It is an 
extension of the Warren Abstract Machine (W AM), which allows fair 
comparison between sequential and parallel Prolog architectures. It is designed 
to execute sequential code efficiently with a modified W AM storage model. 
High-level measurements presented in Section 3.5 support this criterion. It is 
designed to execute parallel code with low communication and parallelism 
control overheads. Measurements are presented in this chapter which support 
this second criterion. The results from the RAP-Prolog benchmark measured 
indicate, for example, that a tightly-coupled shared memory multiprocessor with 
eight high-performance processing elements coupled with a 32-way interleaved 
memory and a high capacity bus can achieve a speed-up of 750%. 

5.1. Memory Model 

RAP-Prolog programs are modeled executing on a shared memory 
multiprocessor model. Many alternative types of multiprocessors have been 
designed for the execution of procedural/scientific programs [49]. These 
organizations offer high performance by incorporating distributed memories and 
complex interconnection networks. The approach taken in this book is to 
measure PW AM under the assumptions of a relatively simple multiprocessor 
model to acquire insights into the memory bandwidth requirements of PW AM. 
There are currently few published results concerning the execution performance 
or memory characteristics of parallel logic programs. Therefore little intuition 
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Figure 5-1: Multiprocessor Shared Memory Model 

exists, as it does for proceduraVscientific programs, as to the best multiprocessor 
configurations. The first step in this evolutionary approach was taken by 
Hermenegildo - an abstract shared memory with no contention was assumed for 
the design of PW AM [36]. The simple memory model used in this book extends 
Hermenegildo's model and is sufficient to indicate communication costs and the 
effectiveness of local memory designs. With the flexibility of the simulation and 
queueing models presented here alternative memory design parameters can be 
explored. 

The multiprocessor system model considered in this book, as illustrated in 
Figure 5-1, consists of a shared memory connected to a set of identical 
processing elements (PEs), each with a private, local memory. Each PE 
references its own local memory, which if it misses, makes a request to shared 
memory. One PE cannot directly access another PE's local memory, nor can a 
PE directly steal a shared memory request from another PE and satisfy it. The 
shared memory consists of a set of identical memory modules. The modules are 
connected to the PEs with an interconnection network. Similar to the analysis of 
the last chapter, queueing models are developed to determine the performance of 
the interleaved shared memory and the efficiency of a single shared bus 
interconnection network. 

A single shared bus system represents only one of several alternative 
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multiprocessor configurations. Of course, a single bus interconnect cannot be 
used in a parallel system of arbitrary size; however, it is a reasonable 
organization for a tightly-coupled PW AM shared memory multiprocessor with a 
limited number of high-speed PEs. Figure 5-1 illustrates such an organization. 
The single bus allows all PEs to simultaneously view all memory requests and 
acts as an arbiter to resolve races to update locks (described in detail in later 
sections). 

The memory referencing characteristics of PW AM are of interest to 
determine the cost, in terms of increased memory traffic, of exploiting 
parallelism. The various overheads involved are listed below. 

• CGE conditions - To execute a conditional graph expression (see 
Section 2.3), evaluation of conditions at runtime may be necessary. 
This is not analyzed here. 

• control of parallelism - Extra bookkeeping references (not present 
in the W AM) are necessary in PW AM to control parallelism. 
Measurements of this overhead are presented in Section 3.5. 

• loss of locality - The W AM stack is a private area, yet the PW AM 
objects allocated to it, for the most part, are used for process 
management, a global function. This implies that some percentage 
of sequential performance has been sacrificed to implement the 
mechanics of the PW AM model. The performance loss is due to 
reduced memory locality, a result of mixing choice points and 
environments with Parcall Frames and Markers. Note that the RAP
Prolog benchmark analyzed is determinate, so that no Markers are 
used. Therefore locality measurements presented include only the 
effects of Parcall Frames. 

• coherency overheads - To solve the consistency problem in 
certain multiprocessor organizations, overhead traffic is generated. 

PW AM (and its relative, the W AM), is an abstract model above the level of 
the memory organization. In other words, specifications for caches and other 
hardware organizations are not included in the architecture. A problem of 
maintaining consistency among the local memories arises when mapping the 
architecture onto a two-level memory hierarchy. PW AM avoids copying of 
passed arguments (i.e., copying at the architecture level) by having a child 
process access its arguments nonlocally from a parent process. This method of 
"on demand" access is in a sense optimal because no overheads are invoked for 
portions of passed arguments that are not used. However, a two-level shared 
memory hierarchy causes nonlocal-access consistency problems. These can only 
be solved by copying at the memory organization level. This problem implies 
that the advantages of avoiding argument copying will be lessened because of the 
extra memory traffic generated when retaining consistency. 

Many of the local memory designs presented in the previous chapter cannot 
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be used within the shared memory model because these local memories cause 
consistency problems. In the next section the consistency problem is defined in 
detail. Coherent local memory models are described and measurements of their 
efficiencies are presented. 

5.2. The Consistency Problem 

The consistency or coherency problem refers to the management of local 
memories in a multiprocessor system, ensuring that each processor sees a 
consistent view of the virtual address space. The consistency problem is 
composed of two parts: keeping the shared memory consistent with a local 
memory, and keeping the local memories consistent with each other. Rather than 
give a general description of the consistency problem (see Censier [15] for 
instance), a description specific to PW AM is given in this section. 

PW AM can be considered a work driven paradigm (c.f., process driven 
paradigm), where parallel call goals are stacked (in the Goal Stack) by a parent 
process. An idle processor can access one of these goals and initiate a child 
process. The consistency problem is best illustrated by considering the simple 
case of two processors. Assume the parent and child processes reside on 
different processors. The child process references argument structures in the 
stack and heap of the parent process. A structure consists of ground terms and 
unbound variables. For instance, if the goal contained an argument instantiated 
to the structure f (a, Z) , the ground terms are the structure f / 2 and the con stant 
a/O. The unbound variable is z. When local memories exist, the following 
problems can occur: 

1. If the local memories are copyback managed, the passed structure 
may exist (in most recent form) in the parent processor's local 
memory, but not in shared memory. Since the child processor 
cannot direct access the parent processor's local memory, there is a 
consistency problem. 

2. Unbound variables of a passed structure are no longer valid in the 
parent processor once the parallel call is entered. The variables 
won't be referenced until after the parallel call is exited; however, 
at this point, the variables are not guaranteed to be up-to-date (the 
child process may bind them). 

3. If the local memories are copyback managed, the solutions 
(bindings for previously unbound variables in the passed 
arguments) produced by the child process may exist (in most recent 
form) in the child processor's local memory, but not in shared 
memory. This consistency problem is symmetrical to 1. 
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4. Unbound variables in the passed structures are no longer valid in 
the child processor after the child process succeeds, if subsequent 
processors bind them. This consistency problem is symmetrical to 
2. 
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As is apparent from the above description, consistency need be ensured only 
at process invocation and completion, i.e., process boundaries. While a process 
is running, it is guaranteed, by PW AM, not to modify shared data, and therefore 
consistency need not be ensured. For instance, a standard local memory could be 
made consistent at these process boundaries by invoking a software manager 
which operated locally (making worst case assumptions concerning which data 
object will be shared after the process boundary is crossed). It is more efficient, 
however, to ensure consistency incrementally, for each memory reference, with 
coherent local memories. Historically, the first such coherent caches proposed 
used a write-through strategy for all writes [32]. A write to a block that is shared 
among the caches causes invalidation of all remote copies. This is considered the 
least costly and lowest performance solution. 

Cache coherency protocols recently proposed in the literature, although 
designed primarily for scientific multiprocessors, can also be used for 
implementing a PW AM multiprocessor. A family of fully distributed broadcast 
cache synchronization schemes is described by Bitar [6] and measured by 
Archibald [3]. Two main variations of broadcast cache protocols are analyzed 
here. Both are identical except for how they handle a write to a block that is 
possibly shared among the caches. The first scheme ("write-in") involves writing 
into the local cache only, and invalidating shared (remote) copies. The second 
scheme ("write-through") involves writing-through to remote copies (and shared 
memory), i.e., shared copies are updated. These are high cost, high performance 
solutions. Traditional write-through cache schemes should not be confused with 
the write-through broadcast scheme. For traditional write-through caches shared 
memory is updated for all writes. The write-through broadcast scheme indicates 
that only "possibly shared" blocks (as indicated by the blocks' status) are written
through. This broadcast scheme implies that dirty blocks may exist which need 
to be copied back to memory upon replacement. 

Prolog architectures have several advantages over traditional architectures 
which should alleviate the complexity and cost associated with broadcast caches, 
if properly exploited. A variation of the proposed write-through broadcast 
caches and traditional write-through caches, called a partial write-through or 
hybrid cache, is analyzed as an example of this type of solution. The hybrid 
cache is a compromise between the simplicity/inefficiency of a traditional write
through cache, and the complexity/efficiency of a write-through broadcast cache. 
The hybrid cache, described in detail in a later section,. is simpler than the 
broadcast model in one major respect: blocks do not require an access status 



www.manaraa.com

166 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES 

(such as private or shared). The proposed broadcast schemes use the status to 
determine if a write-through is needed. The hybrid cache writes-through 
references by static type, not by dynamic status. 

5.2.1. Broadcast Cache Coherency 

Recently proposed coherent caches are based on copyback caches with the 
attribute that shared memory need not be consistent at all times with the local 
memories. The local memories must still be consistent among themselves. In 
this book, these schemes are collectively called broadcast cache models. An 
abstract model is developed here encompassing a family of fully distributed 
broadcast caches, as described by Bitar [6]. The model abstracts the traffic 
behavior of the various individual protocols, without specifying management 
detail. The model assumes that each local cache line has an access status. Most 
proposed statuses include the concepts of private (the line is resident only 
locally) and shared (the line is resident locally and possibly resident remotely). 
Line status is used by a particular protocol to determine how to manage read and 
write requests. There are many design options available in these protocols, but 
only one is a major concern here: the treatment of a write to a possibly shared 
line. There are basically two ways to do this write: write-through and write-in. 
In the following discussion, a write-allocation policy is assumed. Recall that 
write-allocation fetches the target of a write miss into the cache. 

A write-through strategy updates remote copies, and possibly shared 
memory. During a write to a shared line, the processor first arbitrates for the bus. 
After getting control of the bus, it places the address and the value on the bus 
(this is known in the literature as a write-broadcast). Other caches communicate 
back if they had copies. If there are no remote hits, the cache changes the status 
of the block from shared to private, otherwise the status remains shared. 
Assuming that handshaking is not needed, the action requires only a minimal bus 
transaction cycle. 

In its most general form, a write-through synchronization policy need not 
update shared memory. In some systems, it may be advantageous to avoid the 
update, e.g., if the bus cannot be used to simultaneously write to both remote 
caches and shared memory, or if the shared memory is very much slower than the 
caches. For instance, the Dragon computer does not update shared memory [3]. 
In this book, hardware is assumed that benefits from simultaneous update of 
shared memory. In most systems, the status of a line cannot indicate, with 
absolute certainty, if a line is shared because natural replacement may 
independently remove all remote copies. In this case, the write-through policy 
will accomplish only an update of shared memory. 
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A write-in, write-back or copyback strategy is based on the restriction that to 
write a line, the line must be privately cached by the writer. During a write to a 
shared line, the processor first arbitrates for the bus. After getting control of the 
bus, it places the address and an invalidation command on the bus. The line is 
then updated locally and marked private. Shared copies can simply be 
invalidated, and need not be copied back, because they cannot be dirty. Private 
lines may be dirty, and require copyback either on request from another cache or 
by natural replacement. The write-through scheme can also produce dirty lines, 
depending on the policy concerning writes to non-shared lines. For example, the 
Firefly computer uses write-broadcast on shared lines and write-in on non-shared 
lines [3]. 

5.2.2. Locking in Broadcast Caches 

An interesting operation to analyze for the two broadcast schemes is the use 
of locks to protect data structures from two or more processors racing to update. 
Locks are frequently used, in PW AM and other architectures, to protect process 
management structures. The following discussion [7] serves two purposes. Its 
first purpose is to indicate that the two coherency protocols implement locks 
efficieIitly, i.e., without generating excessive memory traffic. Its second purpose 
is to compare the efficiency with which the two protocols implement locks. 

A lock is a single location which one of several processes can set (e.g., to 
one). The locked-out processes continue to read the lock, waiting for the lock to 
be released (e.g., to zero). This type of read loop is called a busy wait. When the 
lock is released, the waiters race to set the lock for themselves. Each busy wait 
loop surrounds a read-modify-write operation intended to set the lock. The read
modify-write operation is an atomic action, i.e., it commands the bus for the 
duration of its execution. Thus only one read-modify-write can be executing in 
the entire system at anyone time. If several busy wait loops are entered 
concurrently, more than one read-modify-write may be attempted, but only one 
will get control of the bus. The others will be aborted and retried. For write
through, a successful read-modify-write (Le., one that passes the read test) issues 
a write on the bus. For write-in, a successful read-modify-write issues an 
invalidation command on the bus. An unsuccessful read-modify-write releases 
the bus immediately. 

A processor busy waiting for a lock continually reads a copy of the lock 
(with a value of one) in its cache. For the write-through policy, when the lock is 
unlocked by another processor, the zero is written to all caches having a copy of 
the block. A waiting processor then reads the zero during its next busy wait 
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iteration, and initiates a read-modify-write in an attempt to set the lock. Races 
between concurrent attempts to set the lock are naturally resolved because the 
read-modify-write operation is atomic, commanding the bus for the duration of 
the action. The winner's read-modify-write checks that the lock still has a zero 
value (which it does) and sets the lock to one, writing through to all caches 
having a copy of the block. Subsequently, a processor which already issued a 
read-modify-write, checks the set lock in the read part of the read-modify-write 
and aborts its actioD. The processor then resumes busy waiting. A waiting 
processor which did not yet issue a read-modify-write, avoids issuing one 
because it reads the set lock in its cache. 

For the write-in policy, when the lock is unlocked by a processor, the block 
is invalidated in all remote caches having a copy of the block. A waiting 
processor then takes a cache miss for the lock read request made during its next 
busy wait iteration. The cache block is fetched and the busy wait loop continues 
as before. If the value is zero, the waiting processor initiates a read-modify-write 
in an attempt to set the lock. Again, races are resolved by virtue of read-modify
write's atomicity. If the read-modify-write read value is one, the waiting 
processor resumes looping. Note that it is important in this scheme that upon a 
miss, a cache enter the target address in its address translation directory, in 
anticipation of a possible invalidation of the target before the miss is serviced. 

The cost complexity and performance of busy wait under assumptions of the 
two policies appears to be equal because waiting processors need not reference 
shared memory within their busy wait loops. The write-in policy is slightly less 
efficient than the write-through policy because all waiting processors must 
service cache misses when the lock is released. For the PW AM model, this 
overhead is not significant because multiple processors rarely wait for the same 
lock. Recall, from Section 3.5, that busy waiting is used in the PW AM model by 
parent processes which are waiting for all their parallel goals to complete. The 
alternative policy, of switching out a waiting parent process for a runnable 
process, was not modeled because it would be less efficient for the simple 
benchmark measured. 

5.2.3. Hybrid Cache Coherency 

A new proposal for a coherent cache scheme targeted for RAP-Prolog is 
described in this section. The objective of this scheme is to combine the 
simplicity and low cost of a traditional write-through cache, with the efficiency 
of a write-through broadcast cache. The proposed cache is called a hybrid or 
partial write-through cache, because certain types of data are written-through 
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and others are copied back. The basic idea is that shared memory is kept 
consistent with the caches by writing-through a certain subset of all write 
references, and that cache-to-cache consistency is kept by write-broadcasting a 
certain subset of all written-through references. The hybrid cache protocol and 
its motivations are developed in detail in the remainder of this section. 

As summarized in Table 2-7 (Section 2.3), objects in the PW AM storage 
model can be categorized as local and global. Within a given process's storage 
segment, local objects can only be referenced locally, i.e., by that process. 
Global objects, however, can be referenced both locally and globally, i.e., by 
other processes (possibly running on other processors). Thus writes can be 
categorized as both local and global. Whether a write reference issued by some 
PW AM instruction is local or global, is known statically because the instructions 
manipulate the storage model in a regular and highly structured manner. The 
host therefore can easily determine which write references are local and which 
are global. 

To keep shared memory consistent with the caches, the following policy is 
used. Local references are copyback managed by the hybrid cache. Global 
references, except for communication references (Goal Stack and Message 
Buffer references), are write-through managed. It has been determined here that 
the communication references have little locality, so that making them non
cacheable does not significantly affect memory traffic. The capability of the 
hybrid cache to copyback, write-through or bypass the cache for individual 
references is similar to that of the Clipper machine [25] (although the 
consistency protocol is not similar to that of Clipper). In the Clipper architecture 
each virtual memory page is marked as copyback (write-in), write-through, or 
non-cacheable. The hybrid cache model allows each individual reference, as 
marked by the host, to be similarly treated. 

Write-broadcast is used to guarantee cache-to-cache consistency; however, 
unlike previously proposed write-broadcast schemes, no access status is kept for 
each cache line, thus reducing complexity and cost. Various access status 
protocols were developed over the past years with the primary goal of reducing 
consistency traffic. The hybrid cache reduces consistency traffic by write
broadcasting only a small subset of all write references. This reduction in traffic, 
without status, is possible because of some sympathetic attributes of Prolog and 
RAP-Prolog, as described below. 

The traditional problem of multiple, concurrent writers for a shared line is 
greatly reduced by RAP-Prolog. Two processes can safely write to their own 
copy of a shared line, each updating the other. The writes are guaranteed by 
RAP-Prolog to update different words within the same line. Races can still 
occur, however, at the level of process management. To prevent this, locks are 
still needed to protect process management data structures. 
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Prolog can be viewed as a single assignment language because within a 
clause containing only determinate goals, logical variables can be bound only 
once. In clauses with nondeterminate goals, logical variables may be bound and 
then rebound due to backtracking. Writes are comprised of: 

• structure creation writes (creating structure on the top of the heap) 

• binding writes (binding a previously unbound variable) 
• unbinding writes (during detrailing upon failure) 

• bookkeeping writes (e.g., creating choice points) 

• process management writes (e.g., signaling the completion of a 
process) 

In PW AM, a processor need only broadcast a subset of those global writes 
that are written-through: (un)binding writes (Le., both bindings and unbindings), 
and global Parcall frame writes. Communication writes (to Goal Stack and 
Message Buffer) need not be broadcast because they are chosen to be non
cacheable. Heap writes during structure creation (on the top of the heap) need 
not be broadcast because newly created structure cannot be shared. Note that this 
optimization is akin to filtering methods first proposed by Censier [15]. 

It should be stressed that in the proposed broadcast schemes of the previous 
section, invalidates or writes-throughs are performed only if the line's access 
status indicates to do so. This greatly reduces the amount of traffic, but implies 
that shared memory and local memories are not necessarily consistent at all 
times. Therefore, a read miss may have to be serviced from another local 
memory. An underlying tenet of the hybrid cache scheme is to avoid this 
complexity by keeping shared memory consistent with local memory. The cost 
of this is the traffic required to write-through a subset of the processor write 
requests. As discussed above, to maintain consistency between local memories 
requires broadcasting a subset of the write-throughs. 

writes CHAT PLM QC1 ILl 
trails 51082 14156 22685 4599 
bindings 77478 29616 45602 12963 
unbindings 49279 8213 9466 3512 
heap+perms 192245 147676 160226 83694 
writes 700422 717946 647358 300950 
I-trails/bindings 0.34 0.52 0.50 0.64 
1-(heap+perms )/writes 0.73 0.79 0.75 0.72 
1-( un) bindings/ (heap+ perms) 0.34 0.74 0.66 0.80 

Table 5-1: W AM Binding Statistics 
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The optimization of broadcasting only a subset of write-throughs is 
beneficial only if broadcasts have a significant cost. Otherwise, requests selected 
for write-through to shared memory are simultaneously broadcast. Since the 
caches spy on the shared memory bus, a broadcast itself does not cost more than 
a write request. However, each cache must check a broadcast address. If the 
cache address translation directory does not have a dedicated port for this check, 
unnecessary broadcasts incur overheads. 

Table 5-1 shows the W AM binding statistics. The binding operation is 
combined with a trail test, necessary to implement backtracking. The number of 
trail writes is therefore less than (or equal to) the number of binding writes. 
During failure, an unbinding occurs for each trailed binding, with the following 
exceptions. As described in Section 3.4, an "inverse trail test" is used to reduce 
the number of unbindings. In addition, if choice points remain after the program 
completes, trailed bindings may remain (that were never unbound). Also shown 
are the number of writes to the heap and to permanent variables (heap+perms), 
i.e., the number of write-throughs. Lastly, the total number of writes is given. 

Three efficiency statistics are presented in Table 5-1, calculated from the 
ratio of trailed bindings (trails) to bindings, write-throughs (heap+perms) to 
writes, and (un)bindings to write-throughs. The first statistic indicates the 
efficiency of the trail test. Notice that CRA T is least efficient, requiring the most 
trails, a result of its nondeterminacy. 

The second statistic approximates the write-through efficiency in the hybrid 
cache, although PW AM will be less efficient because of additional global 
references. About 25% of all writes (and 12% of all data references) require 
write-through. For traditional sequential architectures, similar optimizations can 
be used to reduce write traffic for maintaining consistency. Mulder [55] reports 
that approximately 25% of data references in typical Pascal programs are to 
potentially shared objects and that 25% of data references are writes. Therefore 
about 6% of all data references require write-through. 

The third statistic approximates the broadcast efficiency. From 20% to 66% 
of the write-throughs require broadcast. Again, CRA T is least efficient. Note 
that in the simulation results presented in Section 5.3, the model assumes that 
shared memory update and write-broadcast proceed concurrently. Thus the 
previous optimization of broadcasting only a subset of write-throughs is not 
needed in the simulator because no additional overheads are incurred for 
broadcasts (e.g., contention for cache directory access, as previously mentioned). 
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5.3. Coherent Cache Measurements 

The various solutions to the consistency problem for RAP-Prolog executing 
on a shared memory multiprocessor with local memories are discussed in the 
previous section. These coherent local memory designs include: 

• traditional write-through cache 
• write-in broadcast cache (invalidates remote copies on write) 

• write-through broadcast cache (updates remote copies on write) 

• hybrid cache 
Efficiency measurements of the above designs are now presented and 

analyzed. The models were simulated executing the Sderiv benchmark 
presented in Section 3.5. Recall that Sderiv is a synthetic version of Warren's 
symbolic differentiation benchmark. It is hypothesized that the Sderiv behavior 
under these models resembles that of larger benchmarks. If this is true, 
conclusions drawn in this section can be extrapolated to RAP-Prolog programs in 
general. The Sderiv benchmark accurately models parallel programs that do not 
require the expensive evaluation of CGE conditions at runtime. The benchmark 
represents programs wherein parallel goals do not manipulate a large number of 
terms passed by the parent. Conversely, the Sderiv benchmark does not 
accurately model programs with frequent evaluation of complex CGEs and 
extensive unification of passed structures. The Sderiv experiments allow, at the 
very least, comparisons between alternative coherent memory designs. 

Consider the evidence that shows that Sderiv behavior resembles that of 
larger benchmarks. In Section 3.5 it is shown that sequential Sderiv displays the 
referencing characteristics of the large W AM benchmarks. The local memory 
characteristics of sequential Sderiv and the large W AM benchmarks are 
compared in Figures 5-2 and 5-3. These figures show the performance of a four 
word line data cache (throughout this chapter, only four word line, write-allocate 
data caches are considered - in general, two word lines offer slightly lower 
traffic). For these copyback data caches, Table 5-2 gives the number of standard 
deviations the hit and traffic ratios of Sderiv are from the mean statistics of the 
large W AM benchmarks. The Sderiv benchmark fits rather well, conservatively 
biased to lower hit ratios and higher traffic ratios. Again, one cannot confidently 
extrapolate the parallel behavior of the large benchmarks from Sderiv alone. A 
close fit ensures that the programs exercise the sequential storage model (the 
foundation of the PW AM storage model) in a reasonable, typical way. 

All of the coherent cache models are simulated with the same parameterized 
multiprocessor cache simulator. As in the copy back cache simulator, each 
private cache is categorized by a number of blocks of a given size (in words). 
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large benchmarks 
crhr crtr 
0.0272 0.191 
0.0134 0.0886 
0.0103 0.0549 
0.0103 0.0626 
0.0082 0.0569 

Sderiv 
(hr-Ehr)/crhr 
-0.04 
-0.6 
-1.2 
-0.6 
-1.6 

Table 5-2: Fit of Sderiv to Large Benchmarks 

(tr-Etr)/crtr 
0.4 
1.0 
1.7 
1.1 
2.0 

Each cache is modeled as a fully aSSOcIatIve memory with perfect LRU 
replacement. The simulator is reconfigurable to support the various consistency 
protocols. The simulator processes trace records sequentially, using the cache 
corresponding to the record's processor identifier. Cache consistency is 
maintained for each reference. The simulator models a system with no cache-to
cache transfer capability. Therefore in the broadcast models, if the most up-to
date version of a miss target is held by a remote cache, the line is first copied 
back to memory, and then transferred to the requesting cache. 

A modified copyback cache simulator (derived from the DELCACHE 
program [2]) is also used to model sequential hybrid and write-through caches. 
This simulator estimates the effect of these consistency mechanisms on the large 
sequential benchmarks. The measurements account for the W AM component of 
PW AM, but lack the consistency and communication overheads. 

Consider write-through and hybrid cache performance of the sequential 
benchmarks introduced in Chapter 3. Figure 5-4 shows write-through, hybrid, 
and copyback data cache traffic ratios. All write references to the heap and to 
permanent variables in the environments are written-through, whereas all other 
write references are copied back. The hit ratios of the write-through and hybrid 
caches are identical to those of copyback caches of the same size and block size 
(Figure 4-10). These measurements indicate that the hybrid cache generates 
significantly less traffic than the write-through cache. Note that the hybrid traffic 
is approximately the same as that of a copyback cache. 

Figures 5-5 and 5-6 show the Sderiv traffic ratios of the write-in broadcast 
cache, hybrid cache, and write-through cache, with four word lines. The write
broadcast cache statistics (not shown) are almost identical to those of the write-in 
broadcast cache. This indicates that communication traffic is very low (as is 
apparent from Table 3-17). 

Figure 5-5 shows families of curves corresponding to numbers of PEs, 
plotted as a function of total local memory size (i.e., the sum of the individual PE 
cache sizes). Figure 5-6 redisplays this data, showing families of curves 
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corresponding to individual PE cache sizes, plotted as a function of numbers of 
PEs. The curves in Figure 5-6 are almost flat, indicating that communication 
overheads do not increase significantly with increasing numbers of PEs. When 
increasing from four to eight PEs, some increase in overhead, corresponding to 
indiscriminate spawning of trivial processes, is detected. In addition, the 
benchmark's working set is almost completely contained within caches of 512 
words or greater. 

The hybrid cache generates an amount of traffic between that generated by 
the broadcast and write-through caches. Of course, benchmarks doing more 
communication must be measured to further compare the schemes. Eight PEs 
with write-in broadcast caches of 512 words or greater generate a traffic ratio of 
about 0.30. Although for the caches analyzed this is the least traffic generated, it 
is still high (recall, from Section 4.2.4, that the W AM programs display a traffic 
ratio of 0.16 for a four word line, 512 word data cache). Experiments with 
greater numbers of PEs were not conducted because of the limitation of the 
simple benchmark. 

In summary, the RAP-Prolog benchmark analyzed shows slightly increasing 
communication overheads with increasing numbers of PEs. For large caches, the 
hybrid scheme was shown to approach the performance of the broadcast 
schemes, as the number of PEs increase, under the conditions of low 
communication traffic. For small caches, the broadcast schemes retain a 
significant advantage. For a large number of PEs (eight), even the best cache 
scheme generates a significant amount of traffic. This traffic can be reduced by 
avoiding the spawning of trivial processes. 

5.4. Shared Memory Design 

In this section, queueing models are used to analyze the performance of the 
interleaved shared memory and bus in the previous multiprocessor systems. 
Both hybrid cache and write-in broadcast cache systems are modeled as 
extensions of those queueing models developed in Section 4.5. Queueing 
analysis is an important tool for multiprocessor design because it can provide a 
valid estimate of the contention between PE requests for memory modules and 
the bus. 
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5.4.1. Shared Memory and Bus Queueing Models 

The shared memory model considered here consists of simple memory 
modules of the type described in Section 4.5. Recall that each module can 
deliver a physical word in Ta cycles and that the module can be reaccessed after 
at least T c cycles. This type of memory module does not offer as high 
performance as, for instance, a memory bank, which is itself interleaved. Higher 
performance models may include a two-level local memory for each processing 
element. These local memories may be transparent to the architecture, i.e., are 
paged out to a very large shared memory. Another option is to page the second 
level local memories directly to disk, dedicating one local memory to hold shared 
data. 

For most applications, a shared memory multiprocessor without local 
memories is of little interest because memory traffic is excessive. In a 
uniprocessor model (Section 4.5.3), a single processor makes requests (i.e., 
customers) of an interleaved memory (i.e., server). This memory can be modeled 
as a single server even though it is interleaved, because of two approximations. 
First, the arrival rate of individual (word) requests is scaled by the inverse of the 
interleaving factor. Second, the service time to transfer a block (on a miss or 
copyback) is calculated assuming a burst mode transfer. The effect of waiting 
for a local memory miss, when no further customers can arrive, is approximated 
by decreasing the service time by T dead' 

A key point in the uniprocessor main memory model is that the processor 
must wait for a read miss to be serviced, i.e., the processor stalls. In a 
multiprocessor, however, although a given PE stalls for a read miss, other PEs 
may not be stalled. One method of modeling this is with a multiple server. A 
simpler method is to use a single server model, as in the uniprocessor case, with a 
scaled T dead heuristic. Again, misses are approximated as occurring uniformly 
across the memory modules. For a block size of L buswidths and interleaving 
factor m, the maximum number of concurrently serviced miss requests is miL. A 
single server can be used by scaling the miss request (block) arrival rate by the 
inverse of miL. Abstractly, the model views the system from a single set of L 
modules that together service line requests. 

In the previous sections, various local memories compatible with PW AM are 
introduced. Certain types of local memories are discussed which have no 
consistency problems. These include a choice point buffer, instruction buffer, 
and instruction cache. In addition, local memories which guaranteed consistency 
via special protocols are analyzed: a traditional write-through cache, write-in and 
write-through broadcast caches, and hybrid caches. In the next sections two 
main memory models are presented: a system with local hybrid caches and a 
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system with local write-in broadcast caches. Both types of caches use write
allocation policies. 

Hybrid Cache System 

The details of the hybrid cache simulations, presented in Section 5.3, are first 
reviewed. Communication references (Goal Stack and Message Buffer 
references) are assumed to be non-cacheable and are thus accounted for in a 
higher miss ratio. Other global write references are written-through. 
(Un)binding writes and global Parcall frame writes are broadcast. Writes to 
shared lines cause remote copies to be updated. 

A review is now given of an open M/GIl model for a pure write-through liD 
cache [28], from which the hybrid model is derived. On a miss, a write-through 
cache fetches a line (assuming write-allocate), but does not copyback the 
replaced line, because it cannot be dirty. The arrival rates of misses and write
throughs are modeled as independent Poisson processes, with independent 
service times. The effect of interleaved memory is incorporated into the write
through arrival rate, AI' the miss arrival rate, "-2, and the miss service time, T 2' 
For calculation of Al and "-2, it is assumed that the write-throughs and misses, 
respectively, are uniformly distributed across the memory modules. For 
calculation of T 2' it is assumed that the line size, L, is less than or equal to the 
number of memory modules, m. The model here assumes multiple processing 
elements (PEs), hence the factor of n, the number of PEs, in the arrival rates. 

where 

Al = n*Aw/m 

A2 = n*Anuss *Um 

TI =Tc 

T2 = TIine = max(Ta + (L-l)Tbus,Tc) 

'1 . =MR*l 
"nnss '" 

Awt = WT*J". 
Recall that Ap is the PE request rate and MR is the PE miss ratio. WT is the 
write-through ratio. Processor stalling is not modeled above; however, stalling is 
incorporated into the hybrid model below with Tdead. Several other points 
should first be noted. This model views the system from a group of L modules, 
assuming the interconnection network does not degrade the system bandwidth (a 
bus is modeled independently, later in this section). The arrival rate of line 
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misses are scaled, assuming multiple misses can be serviced concurrently and 
that misses are uniformly distributed across the modules. As a result, the 
detrimental effect (that of increasing memory traffic) caused by increasing n can 
be removed by increasing m. 

In comparison to a pure write-through cache, a hybrid cache contains both 
copyback lines and write-through lines. Copyback lines may be dirty, in which 
case they must be copied back during replacement. Write-through lines are never 
dirty because writes to them are written through. The hybrid cache queueing 
model presented here assumes that all types of references are cached, in order to 
simplify the equations. The measurements presented in this section, however, 
were generated assuming that communication references are not cached. 
Instructions are captured in a separate I-cache, assumed to have the same line 
size as the data cache. The previous MlGIl write-through cache model is 
extended for the hybrid by splitting A2 into two streams: A2a and A2b. The ~a 
stream approximates miss requests that stall the issuing processor until the 
requests have been serviced. The ~b stream approximates miss requests that do 
not stall the issuing processor. 

where 

~a = n*Astau*L!m 

~b = n*"-nostau*L!m 

T2a = max(Ta+(L-l)Tbus,Tc) - aTdead 

T2b = max(Ta+(L-l)Tbus,Tc) 

Astall = MRr *\. 

Anostall = MRw*Aw + MR*Ap*DR. 
In the above equations, MR is the miss ratio of a PE, split into MRr, the read 
miss ratio and MRw' the write miss ratio. The input request stream, Ap' is split 
into AI"' the read miss requests, and Aw' the write miss requests. Note that DR, 
the dirty line ratio, is lower than in the copyback cache. Also, WT, the write
through ratio, is lower than in the pure write-through cache. Both DR and WT 
are measured with the hybrid cache simulator. Miss ratio, uneffected by write 
strategy, is identical for both the hybrid and copyback caches. 

The T dead heuristic, used to model processor stalling as in Section 4.5.3, 
includes a scale factor, a, in the multiprocessor model. a reflects the fact that 
not all PEs are stalled during a given read miss request. a = 1 represents all PEs 
stalling and a = lin represents only the given PE stalling. In general a falls 
between these two values: 
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a = (1 + E(# additional PEs stalled at any time»/n. 

The expected number of additional PEs stalled at any time is calculated with a 
binomial distribution in Pr(stall), the probability that a PE is stalled. Therefore 

a = (1 + (n-l)Pr(stall)/n. 

Pr(stall), estimated assuming no miss penalty, ranges from about 0.05 to 0.10 for 
the cache sizes considered in the next sections. a ranges from about 0.5 to 0.2 
for two to eight PEs. In other words, a reduces the effect of T dead for large 
numbers of PEs. In fact, for large numbers of PEs, the results presented here are 
approximately the same as those calculated assuming no stalls, i.e., a = O. 

An asymptotic MlG/l model is derived for three arrival streams in a manner 
similar to that of Section 4.5.3 (Equations (4.5) - (4.12»). Recall that the shared 

memory bandwidth efficiency, Smem' is defined as 

Smem = Pa/p, 

where P is the open queue occupancy and Pa is the asymptotic occupancy. 
Recall that processor performance degradation is defined (Equation (4.13») as 

D = (P actual - P no-miss)/P actual' 0 ~ D ~ 1 

where P no-miss is the PE performance (in cyc1es/instr) assuming no local memory 
misses and P actual is the PE performance accounting for local memory read 
misses which stall the processor. 

A single bus is chosen for the multiprocessor model considered in this book 
because it is required by the coherent cache protocols studied for implementing 
locking. The bus model is simple and can be extended by adjusting the bus cycle 
time, Tbus' For instance, a faster bus can be modeled by decreasing Tbus' Of 
course, a single bus interconnect cannot be used in a parallel system of arbitrary 
size; however, it is a reasonable organization for a tightly-coupled PW AM shared 
memory mUltiprocessor with a limited number of high-speed PEs, as is modeled 
here. 

In contrast to shared memory queueing model, the bus arrival rate cannot be 
scaled by the number of modules, so that the detrimental effect (that of 
increasing memory traffic) caused by increasing numbers of PEs cannot be 
alleviated. In other words, a single bus is burdened by the total system traffic. If 
the bus is not extremely fast (Tbus/Tc«I), it becomes saturated by a few PEs. In 
the measurements presented in the next section, T bus/Tc = 0.2 is initially chosen. 
Later measurements of bus efficiency are presented relaxing this assumption. 
The standard asymptotic model is derived as in Section 4.5.2, with 

Abus = m(AI +A.za+A2b)· 

Note that since the simulator assumes that broadcasts and write-throughs occur 
simultaneously, coherency traffic is hidden in Awt (a component of AI)' 
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Broadcast Cache System 

A shared memory queueing model for a write-in broadcast cache system is 
described here in terms of modifications to the hybrid cache model of the 
previous section. The two queueing models are similar with the following 
exceptions. Recall from Section 5.2.1 that write-in broadcast caches do not 
generate write-through traffic, but retain consistency rather by issuing line 
invalidations. Invalidation traffic, Ainv' is not included in the shared memory 
queueing model because it is directed from one PE to another, not to shared 
memory. Unlike the hybrid cache, the write-in broadcast cache generates an 
additional stream of forceback traffic due to the invalidation of dirty lines. Note 
that a forceback does not stall the associated processor. The M/G/l shared 
memory queueing model for the write-in broadcast system is the hybrid model 
with the Al stream (for write-throughs) removed. In addition, the definition of 
Anostall is appended with forceback traffic, 

Anostall = MRw *Aw + MR*Ap *(DR+FB). 
Definitions of all parameters in this model are the broadcast cache equivalents of 
the corresponding parameters in the hybrid model. FB, the forceback ratio, is the 
ratio of forcebacks to shared memory requests. Note that forcebacks are 
essentially premature copybacks. The dirty line ratio, DR, of a write-in broadcast 
cache is significantly greater than that of the hybrid cache because the broadcast 
caches do not write-through and therefore collect a large percentage of dirty 
lines. The miss ratios of the broadcast and hybrid caches are identical. 

The bus queueing model for the write-in broadcast cache system is the 
standard asymptotic model of Section 4.5.2 with 

Abus = meAl +"-2a+"-2b)' 
where A2a and A2b are as previously defined and 

Al = n*"-inylm. 

5.4.2. Measurements 

Performance measurements of the shared memory and bus queueing models 
are now presented. Assumed throughout is a local instruction cache of one 
fourth the size of the data cache, with equal line size. Also assumed are L = 4 
words, T a = 3 cycles, and Tc = 5 cycles. Initially, a two word bus is assumed 
with T bus = I cycle. 

Figures 5-7 and 5-8 show the statistics for 16-way and 32-way interleaved 
shared memories, respectively. The bus bandwidth efficiency, shared memory 
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bandwidth efficiency, and percent performance degradation are given as 
functions of cache size. Recall that the shared memory efficiency and 
performance degradation statistics are calculated independently of the bus 
efficiency, assuming a perfect interconnection network. Also recall that these 
efficiency statistics are calculated assuming a peak request rate, whereas the 
performance degradation is calculated assuming a typical request rate. 

The primary hybrid cache result is that even with very few processors, the 
bus saturates. As the number of PEs increases, bus efficiency decreases at 
approximately the same rate, i.e., doubling the number of PEs halves the bus 
efficiency. A secondary result is that shared memory efficiency, assuming 
sufficient bus bandwidth, is reasonable, falling to 67% for 8 PEs with 256 word 
caches. Percent performance degradation is less than 7% for 1024 word caches 
and interleaving factors of 16 or greater. Increasing 16-way to 32-way 
interleaving significantly improves memory efficiency. For 8 PEs with 1024 
word caches, ~mem increases from 0.77 to 0.88, a 14% improvement. As 
interleaving increases, performance degradation decreases. As can be seen in 
Figures 5-7 and 5-8, and surmised from the queueing equations, the effect of 
doubling interleaving can be approximated by simply relabeling the ~mem and 
~bus curves in Figure 5-7 with twice the number of PEs. Halving the bus cycle 
time, TbUS' has the same effect on the bus efficiency, ~bus. For example, for 8 
PEs with 1024 word caches, halving T bus from 1.0 to 0.5, increases ~bus from 
0.45 to 0.65, a 44% improvement. 

The previous results assume a sustained peak burst reference rate. If an 
arrival rate compatible with the actual PE performance is used, the metrics 
improve somewhat. For instance, assuming Ap = 0.46 words/cycle, 8 PEs with 
1024 word caches and 16-way interleaving gives ~bus = 0.52 and ~mem = 0.82. 
These constitute improvements (over the statistics generated with a peak of 
A.p = 0.6 words/cycle) of 15% and 6% respectively. For 32-way interleaving, the 
reduced input rate increases ~mem to 0.91, an improvement of only about 3% 
over a peak rate system. These perturbations indicate that the model is stable 
around the sustained peak request rate. 

Figures 5-9 and 5-10 show shared memory bandwidth efficiency and percent 
performance degradation as a function of the number of PEs for families of 
curves corresponding to interleaving factors. Note that these curves do not 
represent realistic models for all numbers of PEs shown. For example, a 
PWAMJW AM uniprocessor probably cannot sustain 16 simultaneous memory 
requests (line = two buswidths) and therefore 32-way interleaving is unrealistic. 
For 8 PEs, 32-way interleaving corresponds to about two outstanding memory 
requests per PE, a reasonable assumption. These limitations do not suggest that a 
tightly-coupled mUltiprocessor need not implement a highly interleaved memory. 
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The limitations are only in the interpretation of the queueing model results - the 
model cannot accurately analyze an interleaving factor much greater than the 
number of PEs. One method of utilizing a larger number of memory modules is 
to increase the cache block size. The success of such a strategy is contingent on 
a sufficiently fast bus. 

For the particular selection of parameters used in this example, increasing 
the bus capacity is essential. Figures 5-11 and 5-12 show the bus efficiency as a 
function of T buslT C' the ratio of bus cycle time to memory cycle time. ~bus is 
given for both families of cache sizes (assuming 8 PEs) and numbers of PEs 
(assuming 1024 word data cache configurations). Assumed throughout is Tc = 5 
cycles. Figure 5-11 indicates tradeoffs between cache size and bus capacity to 
retain constant bus efficiency. For example, the slowest bus (Tbus = 1 cycle), 
configured with 1024-word data cache PEs, has about the same bus efficiency as 
a bus 50% faster (Tbus = 0.75 cycles), configured with 512-word data cache PEs. 
Figure 5-12 indicates that in systems with larger numbers of PEs, bus efficiency 
degrades more rapidly with decreasing bus capacity, than in systems with smaller 
numbers of PEs. 

The slowest bus presented is representative of current, conservative 
technology assumptions. The current generation Sequent achieves a peak bus 
bandwidth of 32 Mbytes/sec, with TbuslTc "" 0.1. The buses modeled here 
achieve a peak bus bandwidth of 40 Mbytes/sec for a similar 100 nsec cycle 
single word bus (the difference is partially due to the assumption here of a 
separate address bus). For a two word wide bus, 80 Mbytes/sec is achieved. 
More expensive systems can likely achieve bus capacities in the range of 
TbuslTc = 0.10 to 0.05. For instance, the Pyramid achieves a peak bus 
bandwidth of 100 Mbytes/sec, and the Cydra-5 achieves 200 Mbytes/sec [5]. 

Another method of improving system performance is the use of more 
sophisticated local memories. Broadcast caches are shown in Section 5.3 to have 
superior traffic characteristics to hybrid caches. Figure 5-13 shows the 
performance metrics for a write-in broadcast cache system, configured in an 
identical manner to the hybrid cache system previously described. Comparison 
with Figures 5-9 and 5-10 indicates that the broadcast cache does not 
significantly improve shared memory bandwidth efficiency or processor 
degradation (recall these metrics are calculated assuming a perfect bus). Note 
however that bus efficiency is vastly improved. The broadcast cache reduces the 
bus traffic by removing the write-through traffic of the hybrid cache. 
Interestingly, the write-through traffic loads the bus to a significantly greater 
degree than it loads the shared memory. 
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Figure 5-13: Broadcast Cache System Performance (2 word bus) 
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5.5. Summary 

In this chapter, two-level memory hierarchies are defined and analyzed for a 
parallel Prolog architecture. Specifically, the memory performance of the 
Restricted-AND Parallel Prolog (PW AM) architecture, executing on a tightIy
coupled, shared memory multiprocessor, is analyzed. Shared memory 
multiprocessor consistency problems for PW AM are solved in a variety of ways 
- measurements of the memory performance of broadcast, hybrid, and write
through coherent cache schemes are presented. The hybrid cache, a new 
combination of write-through and write-broadcast cache designs, takes advantage 
of RAP-Prolog attributes to guarantee consistency with moderately low 
overheads and inexpensive hardware. The PW AM memory performance 
measurements presented here and in Chapter 3 support the PW AM design tenets 
- the PW AM displays low communication overheads and efficient sequential 
execution. 

Queueing models for the multiprocessor's shared memory and shared bus are 
developed from the M/G/! models of the previous chapter. Measurements are 
presented for two split I+D cache configurations: one with a hybrid data cache 
and one with a broadcast data cache. The primary result of the queueing analysis 
is that for a multiprocessor with a small number (eight) of high-performance PEs, 
buses of insufficient capacity become a performance bottleneck. Consider 
systems with a two word bus connecting a shared memory and eight high
performance PEs, each with a 1024 word data cache and 256 word instruction 
cache. Assuming TbusITc = 0.2 (current, conservative technology) a hybrid data 
cache system achieves 0.45 bus bandwidth efficiency, whereas a write-in 
broadcast data cache system achieves 0.84 bus efficiency. Assuming higher 
capacity buses, for instance TbusITc = 0.05 (now emerging technology), the 
hybrid system achieves 0.80 bus efficiency whereas the broadcast system 
achieves 0.96 bus efficiency. 

Measurements indicate that both hybrid cache and broadcast cache systems 
display approximately the same shared memory bandwidth efficiency and 
processor performance degradation, given buses of sufficient capacity. For the 
system configurations considered immediately above with 32-way interleaving, 
both the hybrid cache and broadcast cache systems exhibit about 6% 
performance degradation (6.5% for 16-way interleaving). These results show 
that an interleaved shared memory can successfully reduce the miss penalty seen 
by an individual PE. Given an advanced bus with bandwidth efficient close to 
one, these performance degradations translate into speed-ups of about 750% for 
an eight PE system. 
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6 Conclusions and Future Research 

6.1. Conclusions 

This book synthesizes logic programming architecture design with the 
lessons learned from procedural programming architecture design and memory 
organization. The field of logic programming machine design is new. At the 
time of the completion of this book, as few as two Prolog machines had the 
ability to execute the benchmarks measured here. It is therefore not surprising 
that little has been published in the area of logic programming machine 
performance. This book helps fill this large gap, but much additional research is 
needed because the supply of questions is seemingly endless. The vast store of 
knowledge and folklore available about procedural language architectures and 
machines is absent for logic programming languages. Therefore, results that are 
similar for the two paradigms are just as interesting as results unique to logic 
programming. 

One of the contributions of this book is the extension of the principles of 
canonical machine architectures [27], first developed for FORTRAN, to Prolog. 
The Prolog canonical interpretive forms (CIFs) efficiently model extensive use of 
dynamic structure creation and pointers, frequent procedure calls, and 
nondeterminate execution behavior. Initially a so-called traditional CIF is 
developed, based on a very close correspondence with Prolog. The traditional 
Prolog CIF assumes a host with an unlimited size stack buffer, in the tradition of 
procedural CIFs. Such an assumption is ill-directed for Prolog, however, where 
only about 75% of data references are to the stack. 

A second CIF is then developed, based on a less expensive host, assuming 
only a register set. A two-level name space model is used, consisting of a 
register set and environment. The architecture places as many variables in the 
registers as possible, using environments only when necessary. It is shown that 
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the traditional CIF performs far better than the register-based CIF, reducing 
instruction bandwidth by 15% and data bandwidth by 75% on average. The 
register-based CIF, however, has the potential to attain higher performance than 
the traditional CIF on both minimal hosts and cache-based hosts with register 
sets. The Warren Abstract Machine (W AM) model [96] is shown to be an 
actualization of a register-based CIF. Consequently, the CIF design paradigm 
can be viewed as an informal method of deriving the W AM instruction set. The 
W AM model is used throughout the book as a typical Prolog architecture, to 
study the memory performance of Prolog benchmarks. The selection of the 
W AM is beneficial because it facilities the study of a closely related Restricted 
AND-Parallel Prolog architecture. 

The Prolog ClFs are introducec as collections of architecture attributes. 
Some of the attributes are more completely defined than others. In contrast to 
procedural ClFs, the Prolog CIF attributes could only be measured empirically. 
Results indicate that the most promising attributes are tight instruction encoding 
and ideal indexing. Realizable attributes can be constructed from these, for use 
in high-performance instruction sets. For instance, byte encoding of instructions 
and indexing on first argument are realizations of CIF attributes. It is important 
to develop more efficient implementations of these and other CIF attributes. 

The ClFs presented are based on a single clause scope for the definition of 
identifiers, a result from the direct cOITespondence with Prolog. This definition 
allows simple translation from source to CIF, but does not offer optimal memory 
performance. An alternative approach is to relax the cOITespondence, increasing 
the size of the scope at the architecture level, e.g., to a procedure or set of 
procedures, at the cost of increased compilation complexity. For the traditional 
CIF, increasing the scope size would allow tighter encoding of identifiers, 
reducing the memory bandwidth requirement. For the register-based CIF, a 
larger scope would allow more efficient register allocation and would facilitate 
the translation of recursion into iteration. These are important topics for further 
research in logic programming language implementations. 

A conventional empirical methodology is used in this book to measure the 
memory characteristics of the sequential and parallel logic programming 
architectures. This methodology consists of a compiler, an emulator, trace
driven memory simulators, and a queueing model analyzer. The contributions of 
this portion of the study lay not in the methodology, but rather in the results 
collected. At the highest level, shallow backtracking is the primary data-memory 
performance bottleneck of the W AM - 46% of dynamic data memory traffic is 
devoted to procedure control and failure, as compared to 39% for both general 
and specialized unification. This result was unexpected, because the W AM 
model is optimized for determinate programs, which do little deep backtracking. 
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Shallow backtracking, however, is the result of an "if-then-else" action within a 
procedure. Because the compiler is not sophisticated enough to frequently avoid 
this behavior, the full penalty (in memory traffic) for backtracking is paid. This 
result indicates that a simple (single) choice point buffer could effectively reduce 
the data bandwidth requirement. Simulation measurements presented verify this 
- for data references, a 12 word buffer offers a miss ratio of 0.55 and a traffic 
ratio of 0.62. 

These results are promising, but performance is still low. Other local 
memories adept at reducing the memory bandwidth requirement are therefore 
studied. Envisioning a single chip microprocessor, the local memories 
considered are small (from 64 to 1024 words). A stack buffer of only 64 words 
offers a miss ratio of 0.28 and a traffic ratio of 0.30. The stack buffer, more 
complex than the choice point buffer, captures both choice point and 
environment references. A copyback cache, capturing all types of references, 
does better still - a 256 word cache (with four word lines) offers a miss ratio of 
0.05 and a traffic ratio of 0.23. Smart caches, which avoid transferring lines no 
longer in a valid storage area, reduce the cache traffic ratio by up to 30%. The 
local data memories analyzed fall into three price-performance ranges. The 
choice point -buffer occupies the low-end, the stack buffer occupies the mid
range, and the cache occupies the high-end. Many current Prolog machines 
[21,58,57,56] incorporate large caches to ensure high performance. For these 

machines, built with discrete logic, cache size was not as limiting a factor as in a 
VLSI implementation. Efficient cost/performance VLSI designs (e.g., for the 
processing element of a multiprocessor) integrate both the CPU and local 
memory on a single chip. The data provided here should aid these designs, 
where size is a critical factor. 

A comparison of logic programming to procedural programming paradigms 
is of interest because most current logic programming languages are 
implemented on conventional hosts. In this book, various comparisons are drawn 
between Prolog, FORTRAN, and Pascal. A portion of these results are 
summarized in Table 6-1. The data cache traffic ratios are given for a four word 
line cache with write-allocation. The results indicate that Pascal, with a smaller 
working set than Prolog, exhibits higher locality, resulting in about half the data 
traffic for equal sized caches. This holds for both copyback and write-through 
data caches. Interestingly, both languages make about 25% of their data 
references to global data objects. Estimating multiprocessor broadcast traffic as 
writes to global (potentially shared) data, Pascal generates half the broadcast 
traffic of Prolog because it makes about half the number of writes. 

A major conclusion of the book is that shallow backtracking contributes 
more to Prolog's data bandwidth requirement than any other factor. Advanced 
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Prolog FORTRAN 
WAM IBM/370 

'\)d, data ref/instr (words) 2.32 0.524 
'\)i, instr ref/instr (words) 0.679 0.837 
mean instr size (bytes) 2.6 3.35 
mean run length (instr) 6.5 16.9 
copyback data cache TR 0.10 
write-thru data cache TR 0.53 
% write/data traffic 47% 18% 
% broadcast/data traffic 12% 

Table 6·1: Prolog, FORTRAN, and Pascal 

Pascal 

0.05 
0.24 
25% 

6% 

compilation techniques [87,4,90] are not discussed here, but promise to allay 
the problem. The effectiveness of future compiler optimizations in reducing the 
choice point traffic is unknown, however. Very effective compilers will alter the 
memory referencing characteristics presented here, placing more emphasis on 
heap referencing. With this trend in mind, data caches seem most appropriate for 
future high-performance implementations. 

In the area of local instruction memory design and analysis, the results 
obtained are similar to those of traditional architectures. Byte encoding 
generates 63% of the instruction traffic of word encoding. Bit encodings save 
about 10% of the traffic generated by byte encoding. Look-ahead instruction 
buffer measurements indicate that an instruction miss ratio of 0.18 could be 
obtained by prefetching alone. The disadvantage of this model is the excessive 
traffic wasted for each taken branch. Instruction caches have the ability to reduce 
traffic and are therefore examined. The Prolog instruction stream exhibits less 
temporal locality than instruction streams of procedural languages, because 
loops, implemented recursively, are more spread out. This loss of locality is 
verified by instruction cache and combined lID cache measurements. The l
eaches perform only moderately well and combined lID caches generate more 
traffic than split I+D caches. The split caches are advantageous because spread 
out loops act like sequential code in small combined caches, forcing data lines 
out with LRU replacement. 

Prolog performance can be increased further still with parallel architectures 
and multiprocessor hosts. A contribution of this study in this area is the memory 
performance analysis of the Restricted-AND Parallel Prolog architecture 
(PW AM) [35] executing on a tightly-coupled shared memory multiprocessor 
model. Shared memory multiprocessor consistency problems for the PW AM 
architecture are solved in a variety of ways. Measurements of broadcast, hybrid, 
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and write-through coherent cache schemes are presented. The hybrid cache, a 
new combination of write-through and write-broadcast cache designs, takes 
advantage of RAP-Prolog attributes to guarantee consistency with moderately 
low overheads and inexpensive hardware. The cache schemes analyzed fall into 
three price-performance ranges. Traditional write-through caches occupy the 
low-end, the hybrid caches occupy the mid-range, and the write-in broadcast 
caches occupy the high-end. The PW AM memory performance measurements 
presented in this book help verify the design tenets of the PW AM architecture: 
low communication overheads and efficient sequential execution. 

The analysis of the local memories cannot be accomplished solely within the 
simple framework of miss and traffic ratios. This is because memory requests 
contend for the service of a single main memory. To lessen this damaging effect, 
interleaved main memories consisting of a set of single-port modules are 
analyzed. Analytical queueing models based on the M/Oll model are used to 
estimate the performance of the memory hierarchies. Of course, the contention 
problem is worse for the shared memory multiprocessor model than for a 
uniprocessor. Measurements of these effects are presented for two families of 
organizations utilizing hybrid caches and write-in broadcast caches. The 
queueing models measure bus and shared memory bandwidth efficiency (i.e., the 
fraction of the bandwidth required by the system, supplied by the bus or shared 
memory), and processor performance degradation. A single shared bus is 
modeled because it is required by the coherent cache protocols studied. 

The primary result of the queueing analysis is that for a multiprocessor with 
a small number (eight) of high-performance processing elements (PEs), buses of 
insufficient capacity become a performance bottleneck. Consider systems with a 
two word bus connecting a shared memory and eight PEs, each with a 1024 word 
data cache and 256 word instruction cache. Assuming T bus/T c = 0.2 (the ratio of 
the bus cycle time to the main memory module cycle time) a hybrid data cache 
system achieves 0.45 bus bandwidth efficiency, whereas a write-in broadcast 
data cache system achieves 0.84 bus efficiency. Assuming higher capacity 
buses, for instance Tbus'Tc = 0.05, the hybrid system achieves 0.80 bus 
efficiency whereas the broadcast system achieves 0.96 bus efficiency. In 
addition to tradeoffs between cache protocol performance and cost, cache size 
and bus capacity can also be traded-off. 

If bus capacity is sufficient to achieve the bandwidth required by the PEs, 
measurements indicate that both hybrid cache and broadcast cache systems 
deliver about the same shared memory bandwidth efficiency and processor 
degradation. For the systems considered in the previous paragraph with a 32-
way interleaved shared memory, both the hybrid cache and broadcast systems 
exhibit about 6% processor performance degradation. 16-way interleaving 



www.manaraa.com

198 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES 

results in about 6.5% degradation. Thus, an interleaved shared memory can 
successfully reduce the miss penalty seen by an individual PE. 

These results indicate that given sufficient parallelism in an application, a 
speed-up of about 750% can be achieved on a tightly-coupled PW AM 
multiprocessor with eight high-performance (e.g., 100 KLIPS on large 
applications) PEs. The design space investigated in this book may be considered 
limited - conventional shared memory designs with single bus interconnect, 
one-level interleaved memory, and few processing elements with small local 
memories. The view taken here, however, is that all types of uniprocessors will 
soon evolve into such systems because these limited multiprocessors offer the 
best cost/performance tradeoff. This book analyzes the memory design 
parameters for Prolog architectures. A low-cost PW AM mUltiprocessor 
achieving over one million application LIPS appears to be a realistic goal, well 
within CUITent technology constraints. 

6.2. Future Research 

Recent comparisons of the PLM with SPUR [8] and the MC68020 
[54] indicate that reduced and multi-purpose instruction-set architectures have 

certain advantages over the high-level W AM. These types of instruction sets 
allow more sophisticated compiler optimizations. A detailed study, similar to 
this book, of the memory characteristics of low-level Prolog instruction sets is 
necessary to evaluate these architectures. The effects of compiler optimizations 
should also be evaluated. 

More precise cost and area measurements are needed for the local memories 
described here (e.g., Mulder's study of Pascal [55]). This would permit a more 
accurate accessment of the price-performance niches of the local memories. 
Larger benchmarks would allow larger local memories to be measured. In 
addition, a more thorough study of alternative designs for the zeroth memory 
level, i.e., the register set, should be conducted. For instance, the Pegasus chip 
[71] implements a single choice point buffer as a set of shadow registers - the 

cost (in area)/performance tradeoffs of this and similar designs (including 
general-purpose microprocessors, such as the AM29000 [99]) are of great 
interest. The traditional Prolog CIF architecture presented in Chapter 2, and its 
direct cOITespondence architectures, such as Prolog-lO, may be better suited than 
the W AM for a host with a large stack buffer or multiple register set. 

This book analyzes the memory performance of a Restricted AND-Parallel 
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Prolog architecture. The study of PW AM executing on a shared memory 
multiprocessor requires more detailed simulations of coherent caches. The 
shared memory and bus queueing models should be coupled for more accurate 
estimations of performance degradation and speed-up. Most importantly, more 
realistic benchmarks are required, including those with CGE conditions and 
nondeterminism. The efficient exploitation of other types of parallelism in logic 
programs is also of great importance. Extensive performance studies of other 
parallel Prolog architectures (e.g., Shen's study of ANLW AM [73]) are needed 
to evaluate their potential benefits. 
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Appendix A 

Glossary of Notation 

P 

Pa 

ANLWAM 

B 

memory references per instruction. 
customer arrival rate in a queueing model, measured in units 
of requests per machine cycle. 

sustained burst memory data request arrival rate from a 
processor. 

sustained burst memory instruction request arrival rate from 
a processor. 

sustained burst memory request arrival rate from a processor. 
For Prolog this arrival rate corresponds to the intense 
memory activity during a chain of successive failures. 

service rate in a queueing model, measured in units of 
customers (requests) per machine cycle. 

bandwidth efficiency, i.e., the ratio of the achieved 
bandwidth to the offered (desired) bandwidth. 

occupancy of the open queueing model, measured in units of 
Erlangs (an abstract unit). Occupancy is calculated as the 
(effective) arrival rate over the (effective) service rate. 
Represents the load on the server. 

asymptotic occupancy, i.e., occupancy of the closed queueing 
model. 
Argonne National Laboratory OR-Parallel Prolog 
architecture. 

achieved bandwidth in an asymptotic (closed) queueing 
model, measured in units of words per cycle. Also referred 
to as B(m,n) in the literature. 

offered bandwidth in an open queueing model, measured in 
units of words per cycle. 

current (top) choice point pointer in the W AM. 
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CIF 

CP 

CR 

D 

DCA 

DR 

E 

H 

HB 

RPM 

L 

LIPS 

LRU 

MIPS 

MR 

m 

n 

P 

P 

PLM 
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coefficient of variation for queueing models. 

current choice point E-stack pointer in the split-stack 
architecture. 

Canonical Interpretive Form. 

continuation pointer in the W AM - points to next 
instruction to be executed should the current goal succeed. 
This register acts like a hardware return pointer from the 
current procedure call. 

copyback ratio, defined for a copyback cache as the ratio of 
the number of words copied back from the cache to main 
memory, to the number of write requests issued by the 
processor. 

processor performance degradation, defined as the fraction of 
ideal processor performance (assuming a local memory of 
unlimited size) lost due to local memory misses in an actual 
processor (with a finite local memory). 

Direct Correspondence Architecture. 

dirty line ratio, defined for write-through and hybrid caches 
as the ratio of the number of copied back lines to the number 
of caches misses, i.e., the fraction of replaced lines that are 
dirty. 

current environment pointer in the W AM. 

top of heap pointer in the W AM. 

heap backtrack pointer in the W AM - points to where the 
top of heap was at the time the current choice point was 
created. 

High-speed Prolog Machine (also called Chi). 

cache line (block) size. 

logical inferences per second. 

Least Recently Used. 

millions of instructions per second. 

miss ratio, defined as the fraction of references that cannot be 
serviced from local memory. 

interleaving factor, i.e., number of memory modules in an 
interleaved memory. 

number of processing elements in multiprocessor. 

processor performance, measured in units of cycles per 
instruction. 

current instruction pointer (program counter) in the W AM. 

Programmed Logic Machine. 
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PSI 

PWAM 

Q 

Q' 
RAP-Prolog 

RISC 

S 

SPUR 

Ta 

Taeeess 

Tb 

Te 

Tdead 

Te 

T'w 

TR 
TRO 

WAM 

Xi 

Yi 
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Personal Sequential Inference machine. 

Restricted AND-Parallel Prolog architecture (also known as 
WHAM!). 

average number of customers in system, in units of words. 

average number of customers enqueued, in units of words. 

Restricted AND-Parallel Prolog. 

Reduced Instruction Set Computer. 

heap structure pointer in the W AM - points to elements of 
structures and lists on the heap. 

Symbolic Processing Using RISCs. 

memory access time, in cycles. 

average memory request delay, in cycles. 

bus transfer time, in cycles. 

memory cycle time, in cycles. 

heuristic used to model processor stalling due to local 
memory read miss. 

effective memory cycle time, in cycles, calculated as T elm. 

average time a memory request waits for service, in cycles. 

top of trail pointer in the W AM. 

Tail Recursion Optimization. 

Warren Abstract Machine. 

temporary register i in the W AM. Also referred to as Ai in 
the literature. 

permanent variable i in the W AM, resident in the current 
environment. 
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Lcode Instruction Set Summary 

Table B-1 lists each Lcode instruction with its sizes for both word and byte 
encoding schemes. Each instruction is listed alphabetically by opcode, with an 
instance of the assembly code. The word encoding size is given in units of 
words. The byte encoding size is given in units of bytes. Refer to Tick [84] for 
the complete Lcode semantics. Refer to Warren [96] for the W AM instruction 
semantics. Notes concerning Table B-1 follow. 

1. Local branch instructions (Le., branches within a procedure) are 
given two sizes for each encoding scheme. The first size 
corresponds to a short offset of one byte. The second size 
corresponds to a long offset of two bytes. For example, with a byte 
encodmg, branch requires 3 bytes for short offsets and 4 bytes for 
long offsets. 

2. Non-local branch targets (call and execute instructions) are 
encoded as a two byte offset from a segment register. 

3. The index instructions switch constant and 
switch structure have sizes of 1 wordor 2 bytes. This does 
not incluae the size of the hash table following the instruction. 
During emulation, only one hash entry reference (two reads - one 
for the key, one for the value) is counted in addition to the 
instruction fetch. 

4. In general, the trust rne else operand can be a local clause 
label. This facilitates cOcle assertion and retraction. Since 
assertion/retraction of code is not implemented in the Lcode 
system, the trust_rne_else instruction is always given a fail 
operand. 

Table B-2 lists each Lcode instruction with associated dynamic statistics 
measured by averaging the statistics from the individual benchmark programs 
(CHAT, PLM, QC1, and ILl). Instructions not executed in any of the programs 
are not included in the table. The mean instruction frequency, data and 
instruction references per instruction (in bytes) and percent weight are shown. 
Instruction weight is calculated as the product of instruction frequency and 
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references per instruction. All instructions have a fixed number of instruction 
references (except for the indexing instructions for which instruction references 
were not accurately measured). Notes concerning Table B-2 follow. 

1. The escape statistics are averaged over those built-ins present in 
the benchmarks. 

2. The failure statistics are averaged over all failures. No instruction 
bytes are referenced because failure is similar to a software trap. 

3. The get constant, put constant, and 
unify constant instructions are furtl1er categorized as atom 
or integer. All the statistics presented are additive, so that for 
instance, get constant accounts for 2.046% of all instructions 
executed, wiffi 1.67% of the total weight. Note that the 
benchmarks show a strong bias towards symbolic rather than 
arithmetic computation. 

4. The Lcode compiler does not have the ability to generate 
unify value instructions. Only the unoptirnized form of 
unify-local value instructions are generated. For read 
mode, these instructions are equivalent, and are listed as 
unify_value. 

5. Copy instructions correspond to unify instructions executed in 
write mode. 

6. In write mode, a unify local value instruction dereferences 
its operand and globalizes it onto the heap if necessary. The 
copy local value category corresponds to write mode 
execution of unify local value instructions that do require 
globalization. - -

7. The copy value category corresponds not to unify value 
instructions executed in write mode, but raffier to 
unify local value instructions that do not require 
globalization (in this case, execution of the two forms are identical, 
except for the extra dereference). Note that globalization was 
required only about 1 in 9 times. 

Table B-3 summarizes these statistics by instruction type, as defined in Table 
2-5. The instruction types are listed in order of greatest percent weight. These 
statistics consider failure, general unification, and escape as separate 
instruction types. Therefore the cost of general unification is not counted in the 
head or structure matching groups. Note that the indexing weight is highly 
optimistic, calculated assuming perfect hashing. 
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comp <,X1,X2 
comp <,Y1,Y2 
cond var,X1 
cond var,Y1 
cut 
cutd 1234 
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opcode assembly instance 
put constant put constant Xl,-44 
put-list put-list Xl 
put:nil put-nil Xl 
put structure put-structure Xl,f/4 
put-unsafe int x put-unsafe int Xl 
put-unsafe-int-y put-unsafe-int Y1 
put:unsafe:value~ put-unsafe-value Y1,X2 
put value x put-value Xl,X2 
put:value:Y put-value Yl,X2 
put variable x put-variable Xl,X2 
put:variable~ put-variable Yl,x2 
retry retry 1234 
retry_me_else retry_rne_else _1234 
stop stop 
subtract subtract Xl,X2,X3 
subtract constant subtract_const Xl,X2,15 
switch c~nstant3 switch constant S 
switch-structure3 switch structure S 
switch-term switch-term _12, fail, 34 
trust trust 1234 
trust me else trust me else fail4 
try try S; 1234 
try_me_else try me-else S, 1234 
unify constant unify constant--44 
unify-local value xunify-local value x Xl 
unify:local:value~unify:local=value:y Y1 
unify nil unify nil 
unify-value x unify-value x Xl 
unify=value:Y unify:value:Y Y1 
unify variable x unify variable x Xl 
unify:variable:y unify:variable:Y Yl 
unify_void unify_void S 

Table B·l: Lcode Instruction Set Formats· continued 

words bytes 
2 6 
1 2 
1 2 
2 6 
1 2 
1 2 
1 3 
1 2 
1 3 
1 2 
1 3 
1 2/3 
1 2/3 
1 1 
1 3 
2 6 
1+2 2+8 
1+2 2+8 
1/2 417 
1 2/3 
1 1 
1 3/4 
1 3/4 
2 5 
1 2 
1 2 
1 1 
1 2 
1 2 
1 2 
1 2 
1 2 
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% data instr % 
ogcode instr bytes bytes wei2ht 
add 0.026 0.00 3 0.Q1 
add constant 0,014 0.00 6 0.Q1 
allocate 3.491 16.00 2 5.27 
call 3.347 0.00 3 0.84 
comp_x 0.151 1.35 3 0.05 
compJ 0.114 6.04 4 0.12 
cond x 1.104 1.10 2 0.23 
condJ 0.416 7.20 3 0.29 
cut 0.859 14.88 1 1.18 
cutd 0.247 12.53 2 0.30 
cut_strong 0.628 6.84 1 0.43 
deallocate 1.670 8.00 1 1.26 
decrement 0.047 0.00 2 0.01 
divide constant 0.026 0.00 6 0.Q1 
escaper 1.119 23.62 2 2.60 
execute 3.037 0.00 3 0.76 
jai[ure2 6.009 44.59 0 22.49 
get atom3 1.823 4.40 6 1.49 
get=integer3 0.223 4.52 6 0.18 
get_list 5.117 2.64 2 1.88 
get_nil 0.500 3.20 2 0.20 
get_structure 6.437 5.83 6 6.52 
get_value_x 1.953 11.17 2 2.13 
get_valueJ 0.187 13.21 3 0.25 
get variable x 0.560 0.00 2 0.09 
get:variableJ 6.051 4.00 3 3.56 
increment 0.234 0.00 2 0.04 
jump 0.359 0.00 2 0.06 
proceed 2.447 0.00 1 0.21 
put atom 0.254 0.00 6 0.13 
put-integer 0.107 0.00 6 0.05 
put_list 0.531 0.00 2 0.09 
put_ni.l 0.049 0.00 2 0.01 

Table B-2: Lcode Instruction Reference Characteristics (notes 1-7 in text) 
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% data instr % 
tyne instr bytes bytes wei2ht 
put_value_x 2.647 0.00 2 0.44 
put_valueJ 6.878 4.00 3 4.04 
put structure 0.383 4.00 6 0.32 
put-unsafe integer x 0.277 0.40 2 0.06 
put=unsafe=integer~ 0.096 3.04 2 0.05 
put_unsafe_valueJ 1.617 8.61 3 1.57 
put variable x 0.372 4.00 2 0.19 
put=variable~ 2.475 4.00 3 1.45 
retry 0.768 4.00 2 0.39 
retry_me_else 2.133 4.00 2 1.07 
switch constant 0.867 0.61 10 0.75 
switch-structure 0.914 4.72 10 1.12 
switch-term 3.657 0.51 4 1.36 
trust 0.267 7.93 2 0.22 
trust me else 2.842 8.00 1 2.15 
try 0.330 44.17 3 1.34 
try_me_else 4.414 42.64 3 16.69 
unify_atom 0.890 5.12 5 0.71 
unify_integer 0.092 4.20 5 0.07 
unify nil 0.051 3.37 1 0.03 
unify=value_x4 0.905 26.86 2 2.11 
unify_valueJ 0.042 6.74 2 0.05 
unify_variable_x 6.257 4.00 2 3.15 
unify_variable_y 2.627 8.00 2 2.20 
unify void 3.099 0.00 2 0.52 
copy itomS 0.396 4.00 5 0.30 
copy-integer 0.270 4.00 5 0.20 
copy=local_value_x6 0.230 6.33 2 0.18 
copy_local_value_y 0.103 11.89 2 0.11 
copy nil 0.398 4.00 1 0.17 
copy=value_x7 1.928 5.90 2 1.26 
copy_valuey 0.912 10.65 2 0.94 
copy variable x 1.794 4.00 2 0.90 
copy: variable J 1.110 8.00 2 0.93 
copy_void 0.302 5.24 2 0.19 

Table B·2: Lcode Instruction Reference Characteristics· continued 
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% data instr % 
tYl~e instr bytes bytes weight 
procedure control 12.59 14.18 1.80 24.31 
failure 6.36 38.24 21.32 
head matching 20.94 6.75 3.44 13.91 
structure matching 19.97 6.01 2.44 12.83 
clause control 14.11 4.80 2.20 9.35 
goal matching 14.15 2.45 3.25 8.77 
unification 3.11 14.36 3.54 
escape 1.49 16.66 2.00 3.00 
indexing 7.55 3.78 2.75 2.89 
arithmetic 0.39 0.00 3.80 0.09 

Table B·3: Lcode Characteristics by Type 
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Local Memory Management Algorithms 

In this appendix, the management algorithms for the choice point buffer, 
copyback stack buffer, and copyback environment stack (E-stack) buffer are 
presented. Note that the algorithms are written for clarity, not optimality. Buffer 
management must often be performed within normal instruction semantics. For 
instance, in Figure C-2, allocate resets E and TOS, manages the buffer, and 
then writes the new environment. This last portion of the instruction semantics is 
not included in the algorithm and can be found in Tick [84]. 

action is 
reference i(B): 

if (valid and BufferSize~i) 
access buffer[i]; 

else 
access memory[B+i]; 

try n: 
try me else n: 

- if(valid) 
memory[B .. B+m] = buffer[O .. m]; 

else valid = 1; 
if(n> BufferSize) 

m = BufferSize; 
else m = n; 

cut: 
trust: 
trust me else: 

valid-: 0; 

Figure C-l: Choice Point Buffer Management 
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action is 
reference to a: 

if (valid and Z~a and ~A) 
access buffer[a]; 
if (write) dirty[a] = 1; 

else 
access memory[a]; 

deallocate: 

cut: 

CP = CP(E); 
E = E(E); 
reset(); 

B = B(E); 
if nondeterminate B = B(B); 
HB =HB(B); 
reset(); 

trust: 
trust me else: 

B = B(B); 
HB =HB(B); 
reset(); 

allocate n: 
E = TOS += n+4; 
set(n+4); 

try n: 
try me else n: 

- B -: TOS += n+4; 
set(n+4); 

Figure C·2: Stack Buffer Management 
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set(n): 
if (n>BufferSize) 

if valid 

else 

valid = 0; 
copyback( A -Z+4); 

if (valid) 

else 

InUse = A-Z+4; 
LeftOver = BufferSize - InUse; 
d = n - LeftOver; 
if (d>O) 

copyback(d); 
Z+=d; 

A=TOS; 

valid = 1; 
A = TOS; 
Z= A-n; 

reset(): 
if (E>B) 

TOS =E; 
else 

TOS =B; 
valid = TOS~; 
if (valid) 

else 

copyback(d): 

dirty[Z .. Z-TOS+A+4] = 0; 
A=TOS; 

dirty[Z .. A+4] = 0; 

for (i=Z;i<Z+d;i+=4) 
if (dirty[i]) 

dirty[i] = 0; 
memory[i] = buffer[i]; 

Figure C-3: Stack Buffer Management Support 

215 
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action is 
reference to a: 

if (valid and Z~a and ~A) 
access buffer[a]; 
if (write) dirty [a] = 1; 

else 
access memory[a]; 

deallocate: 

cut: 

CP=CP(E); 
E =E(E); 
reset(); 

B =B(E); 
ifnondeterminate B = B(B); 
HB =HB(B); 
reset(); 

trust: 
trust me else: 

if = B(B); 
HB =HB(B); 
reset(); 

allocate n: 
E = TOS += n+4; 
set(n+4); 

reset(): 
if(E>C) 

TOS =E; 
else 

TOS =C; 
valid = TOS~; 
if (valid) 

else 

dirty[Z .. Z-TOS+A+4] = 0; 
A = TOS; 

dirty[Z .. A+4] = 0; 

Figure C-4: E-Stack Buffer Management 
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