
www.manaraa.com

www.manaraa.com

MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

www.manaraa.com

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

FRONTIERS IN LOGIC PROGRAMMING ARCHITECTURE
AND MACHINE DESIGN

Consulting Editor

Doug DeGroot

'FRONTIERS IN LOGIC PROGRAMMING ARCHITECTURE AND MACHINE
DESIGN' is a unique collection of books describing closely related research subjects at
the forefront of logic programming architecture and machine design. Initially, the col
lection will consist of the following books:

PARALLEL EXECUTION OF LOGIC PROGRAMS
by John Conery

A HIGH PERFORMANCE ARCHITECTURE FOR PROLOG
by T. P. Dobry

INDEPENDENT'AND'-PARALLELPROLOG
AND ITS ARCHITECTURE

by Manuel Hermenegildo

MEMORY PERFORMANCE OF PROLOG ARCHITECTURES
by Evan Tick

John Conery's seminal work at the University of California at Irvine presented the first
model for the parallel interpretation of logic programs called the AND/OR Process
Model. The same year Conery's work was published, John Warren wrote a landmark
paper describing an abstract sequential architecture for Prolog. These two works
spawned research efforts throughout the world. One of the largest of these was led by T.
P. Dobry at the University of California at Berkeley whose efforts resulted in the design
of the Programmed Logic Machine which was the first high-performance Prolog
engine. At the same time, at the University of Texas at Austin, Manuel Hermenegildo
designed a truly efficient parallel execution model and multiprocessor architecture for
logic programming which was the first practical realization of Conery's framework. At
Stanford University, Evan Tick designed and measured memory organizations suitable
for both Warren's sequential and Hermenegildo's parallel architectures.

This collection of books is designed to provide up-to-date information on Logic Pro
gramming Architecture and Machine Design in a timely fashion to researchers and
students in the most timely manner possible.

www.manaraa.com

MEMORY PERFORMANCE OF
PROLOG ARCHITECTURES

by

Evan Tick

Stanford University

~.

" KLUWER ACADEMIC PUBLISHERS
Boston/DordrechtiLancaster

www.manaraa.com

Distributors for North America:
Kluwer Academic Publishers
101 Philip Drive
Assinippi Park
Norwell, Massachusetts 02061 USA

Distributors for the UK and Ireland:
K1uwer Academic Publishers
MTP Press Limited
Falcon House, Queen Square
Lancaster LAI IRN, UNITED KINGDOM

Distributors for all other countries:
Kluwer Academic Publishers Group
Distribution Centre
Post Office Box 322
3300 AH Dordrecht, THE NETHERLANDS

Library of Congress Cataloging-in-Publication Data

Tick, Evan, 1959-
Memory performance of prolog architectures / by Evan Tick.

p. cm. - (The Kluwer international series in engineering and
computer science; SECS 40. Frontiers in logic programming
architecture and machine design)

Bibliography: p.
Includes index.

ISBN-13: 978-1-4612-9202-9
DOl: 10.1007/978-1-4613-2017-3

e-ISBN-13: 978-1-4613-2017-3

I. Prolog (Computer program language) 2. Computer architecture.
I. Title. II. Series: Kluwer international series in engineering
and computer science; SECS 40. III. Series: Kluwer international
series in engineering and computer science. Frontiers in logic
programming architecture and machine design.
QA 76. 73.P76T53 1987
ooS.I-dcI9

Copyright © 1988 by Kluwer Academic Publishers

Softcover reprint of the hardcover 1st edition 1988

87-26283
CIP

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher, Kluwer Academic Publishers, 101 Philip
Drive, Assinippi Park, Norwell, Massachusetts 02061.

www.manaraa.com

ForR.K.

www.manaraa.com

CONTENTS

Contents

Preface

Acknowledgements

1. Introduction
1.1. What is Prolog?
1.2. Why Prolog?

1.2.1. Reduced Instruction Set Architectures
1.2.2. Parallel Logic Programming Languages
1.2.3. Lisp

1.3. Previous Work
1.3.1. Architectures
1.3.2. Benchmarking
1.3.3. Memory Organization

1.4. Book Outline

2. Prolog Architectures
2.1. Canonical Prolog Architectures

2.1.1. elF Data Encoding
2.1.2. Naive and Traditional Prolog CIFs
2.1.3. Register-Based CIF
2.1.4. Other CIF Metrics: Stability
2.1.5. Summary

2.2. Environment Stacking Architectures
2.2.1. DEC-tO Prolog Abstract Machine
2.2.2. Warren Abstract Machine
2.2.3. Comparison Between Prolog-1O and W AM
2.2.4. Lcode Architecture

2.3. Restricted AND-Parallel Prolog Architecture
2.4. Summary

3. Prolog Architecture Measurements
3.1. Methodology

3.1.1. Compiler
3.1.2. Assembler
3.1.3. Emulator

vii

XVll

XiX

1
4
8
8

10
10
12
12
13
14
16

19
20
22
23
35
41
46
47
47
49
50
54
61
65

69
70
70
72
72

www.manaraa.com

viii MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

3.1.4. Simulators
3.2. Benchmarks
3.3. W AM Referencing Characteristics

3.3.1. Data Referencing
3.3.2. Instruction Referencing

3.4. CIF Referencing Characteristics
3.5. PWAM Referencing Characteristics
3.6. Summary

4. Uniprocessor Memory Organizations
4.1. Memory Model
4.2. Data Referencing

4.2.1. Choice Point Buffer
4.2.2. Stack Buffer
4.2.3. Environment Stack Buffer
4.2.4. Copy back Cache
4.2.5. Smart Cache
4.2.6. Comparison of Data Memories

4.3. Instruction Referencing
4.3.1. Instruction Buffer
4.3.2. Instruction Caches

4.4. Local Memory Configurations
4.5. Main Memory Design

4.5.1. General Queueing Model
4.5.2. Memory Bus Model
4.5.3. Copyback lID Cache System
4.5.4. Stack and Instruction Buffer System

4.6. Summary

5. Multiprocessor Memory Organizations
5.1. Memory Model
5.2. The Consistency Problem

5.2.1. Broadcast Cache Coherency
5.2.2. Locking in Broadcast Caches
5.2.3. Hybrid Cache Coherency

5.3. Coherent Cache Measurements
5.4. Shared Memory Design

5.4.1. Shared Memory and Bus Queueing Models
5.4.2. Measurements

5.5. Summary

6. Conclusions and Future Research
6.1. Conclusions
6.2. Future Research

73
73
76
76
87
93
97

101

103
105
107
107
109
115
115
121
122
126
128
130
134
138
139
145
146
152
157

161
161
164
166
167
168
172
178
179
183
191

193
193
198

www.manaraa.com

CONTENTS

Appendix A. Glossary of Notation

Appendix B. Lcode Instruction Set Summary

Appendix C. Local Memory Management Algorithms

References

Index

ix

201

205

213

217

225

www.manaraa.com

List of Figures

Figure 1-1: Prolog Program Example: isotree/2 5
Figure 1-2: Prolog Program Example: flattenCode/3 8
Figure 2-1: Traditional Prolog CIF Storage Model 24
Figure 2-2: Traditional Prolog CIF Clause Examples 29
Figure 2-3: CIF Instruction Encoding (bits): append/3 Clause 2 32
Figure 2-4: Traditional CIF Data Referencing (words): 33

append!3
Figure 2-5: Alternative CIF Data Referencing (words): 34

append!3
Figure 2-6: Register-based Prolog CIF Storage Model 37
Figure 2-7: Register-based Prolog CIF Program Examples 39
Figure 2-8: CIF Instruction Encoding (bits): append/3 Clause 2 41
Figure 2-9: Prolog Program Example: Max-N+1 Trails 43
Figure 2-10: Prolog Program Example: No Trails 43
Figure 2-11: Prolog Program Example: Moving Comparison 43

Into "Head"
Figure 2-12: Program Example: W AM/Prolog-1 0 Comparison 51
Figure 2-13: Lcode Program Example: flattenCode/3 55
Figure 2-14: Instruction Trace of Head Failure: flattenCode/3 56
Figure 2-15: Instruction Trace of Head Success: flattenCode/3 56
Figure 2-16: RAP-Prolog Program Example: isotree/2 63
Figure 3-1: Prolog Memory Perfonnance Measurement 71

Methodology
Figure 3-2: Data References By Area 78
Figure 3-3: Choice Point Size Frequency Distributions (words) 82
Figure 3-4: Environment Size Frequency Distributions (words) 83
Figure 3-5: Choice Point Depth Frequency Distributions 84

(words)
Figure 3-6: Environment Depth Frequency Distributions 85

(words)
Figure 3-7: Choice Point Reset Depth Frequency Distributions 88

(words)
Figure 3-8: Environment Reset Depth Frequency Distributions 89

(words)

www.manaraa.com

xii MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

Figure 3-9: Heap Reset Depth Frequency Distributions (words)
Figure 3-10: Dereference Chain Length Distribution
Figure 3-11: Instruction Format Distribution
Figure 3-12: RAP-Prolog Performance

Methodology
Measurement

Figure 3-13: RAP-Prolog Program Example: Sderiv
Figure 4-1: Uniprocessor Memory Model
Figure 4-2: Choice Point Buffer Model
Figure 4-3: Choice Point Buffer Performance Measurements
Figure 4-4: Stack Buffer Model: Object Allocation
Figure 4-5: Stack Buffer Performance Measurements
Figure 4-6: Effect of Dirty Bits on Stack Buffer Traffic Ratio
Figure 4-7: Choice Point Reference Hit Ratios
Figure 4-8: Environment Stack Buffer

Measurements
Performance

Figure 4-9: Comparison of Environment Reference Hit Ratios
Figure 4-10: Data Cache Performance Measurements
Figure 4-11: Data Cache Dirty Line Ratio
Figure 4-12: Comparison of Copy back and Smart Caches
Figure 4-13: References Saved by Smart Cache
Figure 4-14: Local Data Memories: Hit Ratio
Figure 4-15: Local Data Memories: Traffic Ratio
Figure 4-16: Pascal and Prolog Copyback Data Cache

Measurements

90
91
92
98

99
105
108
110
111
113
114
114
116

117
119
120
123
124
125
125
127

Figure 4-17: Instruction Run Length Distribution (bytes) 129
Figure 4-18:
Figure 4-19:
Figure 4-20:
Figure 4-21:
Figure 4-22:
Figure 4-23:
Figure 4-24:
Figure 4-25:
Figure 4-26:
Figure 4-27:

Instruction Buffer Traffic Ratios 131
Instruction Cache Hit Ratio 133
Instruction Cache Traffic Ratio 133
Instr/Data Cache Performance Measurements 135
I/D Cache Dirty Line Ratio 136
Configuration Hit Ratios 137
Configuration Traffic Ratios 13 7
Mean Peak Sustainable Request Arrival Rate 142
Flores Model (An = 0.6) 144
Copyback I/D Cache Queueing Model: 2 Word 150
Bus

Figure 4-28: Copyback lID Cache Queueing Model: 1 Word 151
Bus

Figure 4-29: Stack Buffer Configuration: Performance 155
Degradation

Figure 4-30: Stack Buffer Configuration: Memory Bandwidth 155
Efficiency

Figure 5-1: Multiprocessor Shared Memory Model
Figure 5-2: Sderiv Fit: D-Cache (4 word line) Hit Ratio

162
173

www.manaraa.com

LIST OF FIGURES xiii

Figure 5-3: Sderiv Fit: D-Cache (4 word line) Traffic Ratio 173
Figure 5-4: Data Cache Traffic Ratios: Sequential Benchmarks 175
Figure 5-5: Sderiv Traffic Ratios of Coherency Schemes for 176

Varying #s of PEs
Figure 5-6: Sderiv Traffic Ratios of Coherency Schemes for 177

Various Cache Sizes
Figure 5-7: Hybrid Cache System With 16-Way Interleaving 184
Figure 5-8: Hybrid Cache System With 32-Way Interleaving 185
Figure 5-9: Memory Efficiency: 1024 Word Hybrid Cache 187

System
Figure 5-10: Percent Performance Degradation: 1024 Word 187

Hybrid Cache System
Figure 5-11: Bus Efficiency: Hybrid Cache System (8 PEs/2 189

word bus)
Figure 5-12: Bus Efficiency: 1024 Word Hybrid Cache System 189

(2 word bus)
Figure 5-13: Broadcast Cache System Performance (2 word 190

bus)
Figure Col: Choice Point Buffer Management 213
Figure C-2: Stack Buffer Management 214
Figure C-3: Stack Buffer Management Support 215
Figure C-4: E-Stack Buffer Management 216

www.manaraa.com

List of Tables

Table 1·1: Lisp vs. Prolog: Sun-3/160 Comparison 11
Table 1·2: Lisp vs. Prolog: Abstract Machine Comparison 12
Table 2·1: WAM Model State Registers 49
Table 2·2: WAM and Prolog-l 0 Stack Correspondence 52
Table 2·3: WAM and Prolog-lO Memory Referencing 52
Table 2·4: Prolog-lO - WAM Tradeoffs 53
Table 2·5: Lcode Instruction Set 57
Table 2·6: Lcode Data Object Formats 58
Table 2·7: PWAM Storage Model (notes 1-7 in text) 64
Table 3·1: Stanford Emulation Laboratory Prolog Tools 70
Table 3·2: Local Memory Simulators 73
Table 3·3: Summary of Prolog Benchmarks' Characteristics 75
Table 3·4: Runtime Data Areas in Words 76
Table 3·5: Data Referencing Characteristics of Benchmarks 77
Table 3·6: Summary of High-level Prolog Memory Statistics 79
Table 3·7: Heap Reference Depth Statistics (in words) 86
Table 3·8: Instruction References for Benchmarks (per 93

Encoding 1)
Table 3·9: Comparison Between Prolog CIF Memory 94

Bandwidths
Table 3·10: WAM Instruction Bytes Referenced (per CIF) 94
Table 3·11: Standard (WAM) Indexing Memory Bytes 94

Referenced (per CIF)
Table 3·12: WAM (De)trailing Memory Bytes Referenced (per 94

CIF)
Table 3·13: Data Referencing of Single and Split-Stacks (Per 96

Single)
Table 3·14: Comparison Between Single and Split-Stack 96

Models
Table 3·15: Summary of PW AM Sderiv Benchmark on Four 100

PEs
Table 3·16: PW AM Sderiv Data Bandwidth Efficiency 100
Table 3·17: PW AM Sderiv Data Referencing Characteristics on 100

Four PEs

www.manaraa.com

xvi MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

Table 4-1: PLM Timings 141
Table 5-1: WAM Binding Statistics 170
Table 5-2: Fit of Sderiv to Large Benchmarks 174
Table 6-1: Prolog, FORTRAN, and Pascal 196
Table B-1: Lcode Instruction Set Formats (notes 1-4 in text) 207
Table B-2: Lcode Instruction Reference Characteristics (notes 209

1-7 in text)
Table B-3: Lcode Characteristics by Type 211

www.manaraa.com

Preface

One suspects that the people who use computers for their livelihood are
growing more "sophisticated" as the field of computer science evolves. This
view might be defended by the expanding use of languages such as C and Lisp in
contrast to the languages such as FORTRAN and COBOL. This hypothesis is
false however - computer languages are not like natural languages where
successive generations stick with the language of their ancestors. Computer
programmers do not grow more sophisticated - programmers simply take the
time to muddle through the increasingly complex language semantics in an
attempt to write useful programs. Of course, these programmers are
"sophisticated" in the same sense as are hackers of MockLisp, PostScript, and
Tex - highly specialized and tedious languages. It is quite frustrating how this
myth of sophistication is propagated by some industries, universities, and
government agencies. When I was an undergraduate at MIT, I distinctly
remember the convoluted questions on exams concerning dynamic scoping in
Lisp - the emphasis was placed solely on a "hacker's" view of computation, i.e.,
the control and manipulation of storage cells. No consideration was given to the
logical structure of programs. Within the past five years, Ada and Common Lisp
have become programming language standards, despite their complexity (note
that dynamic scoping was dropped even from Common Lisp). Of course, most
industries' selection of programming languages are primarily driven by the
requirement for compatibility (with previous software) and performance. To
achieve performance, C and similar languages are based on the functionality of
the underlying host machine. As a result, they have no logical structure
corresponding to the application.

This socalled trend toward "sophistication" belies a deep-seated problem:
computers are simply becoming more difficult to program (contrastingly, the
"use" of computers, i.e., pressing buttons, is becoming easier, e.g., with the
Macintosh). There is nothing wrong with expanding a language to make it more
powerful, so long as the expansion is consistent with the basic structure of the
language. A language can be extended in directions away from the fundamental
basis, if it is ensured that the renegade extensions will very rarely be used, and so

www.manaraa.com

xviii MEMORY PERFORMANCE OF PROLOG ARCHITECfURES

do not confuse the programmer. For example, Lisp has purposefully evolved
contrary to this view, as a "ball of mud." In general, implementation issues are a
mystery to most programmers (and some implementors), forcing the use of the
dirtiest parts of a language in an attempt to gain performance. Often these
attempts have no effect or backfire, but they always destroy the logic of a
program. In addition, the parallelization of such languages, in an effort to
increase performance on multiprocessors, often entails the creation of additional
constructs, such as a Future (in Multi-Lisp) or Parallel-Let (in QLisp), with
complex semantics which are difficult to use effectively and safely.

Computer programming can benefit from clean, logical program semantics
because such semantics facilitate understanding, hence ease of debugging,
program modification and high-performance implementation (further arguments
can be given concerning program verification, etc.). Logic programming
languages are a family of programming languages based on the first-order
predicate logic, and manage to retain a semblance of declarative semantics.
Although logic programming languages have not yet achieved the ideal plateau
of complete declarativity, for the most part, the semantics, e.g., of NV-Prolog and
CLP(9\), are so easy to understand that complex programs can be built with little
effort. Recently Prolog has been successfully implemented on multiprocessors,
with no need to change its logical semantics. Even within the logic programming
community, however, the conflict between performance and clarity (logical
interpretation) rages in the arena of parallel implementations. Languages such as
GHC and CP sacrifice ease of programming to facilitate implementations on
mUltiprocessors.

This book is concerned with the design and performance of computer
architectures, i.e., instruction sets and storage models, for logic programming
languages. This book is concerned with the Prolog language because it is
commonly used and is representative of a large number of other logic
programming languages. Few comments are given as to the relative merits of
Prolog as compared to other logic programming languages, or functional
languages - that will require an entire other book. Logic programming
languages, although far from perfect, are more useable and offer more cost
efficient multiprocessor implementations than other symbolic programming
paradigms. In the future, Prolog will no doubt be extended in many areas, e.g., to
include efficient and logical definitions of arrays and modules. Because of the
strong logical foundation, ease of programming will be retained and parallel
implementations will abound.

www.manaraa.com

Acknowledgements

Many people deserve acknowledgement for helping me to write this book.
Professors Michael Flynn and Stephen Lundstrom of Stanford University
have generously shared their knowledge and experience in supporting my
research. I am also thankful for the encouragement and assistance of Susan
Gere, Leslie Tick, and the colleagues with whom I have worked most closely:
Fung Fung Lee, Bill Lynch, Hans Mulder, and Andrew Zimmerman.

At Quintas I have been fortunate to work in an challenging environment
created by Lawrence Byrd, William Kornfeld and David H. D. Warren, where
many fresh ideas were generated (and stale ones discarded). It has also been a
rewarding experience and a great pleasure to work with David Bowen, Tim
Lindholm, Brendan McCarthy, Richard O'Keefe, Fernando Pereira, and
David Znidarsic.

The "W AM" and "PWAM" architectures discussed in this book are entire
ly the respective works of David H. D. Warren and Manuel Hermenegildo, to
whom both I am greatly indebted. Bill Lynch helped write the WAM emulator
described in Chapter 3. Hans Mulder supplied and helped analyze the Pascal
data. Philip Bitar, of the University of California at Berkeley, patiently ex
plained cache coherency to me. Manuel Hermenegildo and Richard Warren,
of the Microelectronics and computer Technology Corporation (MCC), sup
plied and helped analyze the PWAM multiprocessor traces. This book was
most strengthened by numerous discussions with Fung Fung, Manuel, and
Tim.

www.manaraa.com

MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

www.manaraa.com

1 Introduction

The main reason that current computer applications in symbolic processing
fail to meet speed constraints on current machines is the gap between the
applications and the languages and architectures in which they are implemented.
Applications such as natural language understanding and symbolic equation
solving, as compared with conventional applications such as numerical modeling
and simulation, are further removed from conventional procedural/functional
languages such as Pascal and Lisp and their corresponding numeric/scientific
processor architectures. This is because these ambitious new applications must,
in a sense, be written as meta-level interpreters. A meta-level interpreter is a
program which performs additional levels of interpretation to implement features
not present in the host language, e.g., nondeterminate execution for parsing or a
reduction mechanism for theorem proving.

Any approach to improving program performance involves implementing
these applications with appropriate languages and designing efficient
architectures that either directly correspond to these languages or support
interpretation of these features. Features which previously required meta
interpretation are now included in the instruction set and are implemented
directly in the architecture.

This book presents a study of abstract machine architectures for Prolog, a
well-known logic programming language. Logic programming is a
programming paradigm constructed from the abstract model of first order logic.
Prolog is representative of that class of languages with powerful enough
functionality to facilitate the development of advanced applications. Prolog is
used primarily for artificial intelligence and database applications, as well as
general applications such as compiler writing. Prolog differs from procedural
languages, such as Pascal and Lisp, in that it is applicative (variables can be
bound at most once in an execution path), nondeterminate (alternate paths are
executed in an attempt to create a consistent set of variable bindings), and uses

www.manaraa.com

2 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

unification (a type of pattern matching) as the primary operation. Thus, means to
efficient Prolog execution will likely differ from those of conventional
languages.

As the gap between language and architecture decreases, fewer instructions
are executed within the program. These instructions do more work and may
therefore be more difficult to implement. In most high-Ievel-Ianguage
architecture machines, the complexity of the instruction set forces a microcoded
implementation. An alternative is to implement the abstract machine
interpretively on a lower-level host machine. The selection of the most cost
effective implementation strategy depends on many considerations -
technology, instruction set compatibility, design effort, etc. Regardless of the
relative weight of each consideration, any design approach requires an
understanding of the dynamic Prolog program behavior, i.e., the characteristics
of the abstract machine corresponding to Prolog. This book supplies this
information.

The problem of increasing Prolog execution speed is approached from the
vantage point of memory design. High-speed processors are ultimately limited
by memory bandwidth and architectures that require less bandwidth have greater
potential for high performance. The memory-referencing characteristics of well
designed abstract machines are minimal in the sense that a host which directly
implements the abstract machine instructions as atomic actions will make fewer
memory references than other types of hosts. No matter what the host, however,
the memory-referencing characteristics measured in this book are, for the most
part, applicable.

A family of canonical Prolog architectures with advantageous bandwidth
requirements is defined in close correspondence to the semantics of Prolog. The
Warren Abstract Machine (W AM) architecture [96], used for memory design
throughout the book, is a member of this family. Measurements of the Prolog
Canonical Interpretive Form (ClF) indicate upper memory-performance bounds
afforded by "ideal" attributes (which go beyond the W AM).

High-speed uniprocessor performance is necessary, even within a
multiprocessor, because not all types of parallelism exist or can be exploited in
all applications. Within a shared memory multiprocessor, local processor
memories are necessary to reduce bandwidth and allow undegraded execution of
sequential code. The main portion of the book concerns modeling and analysis
of two-level memory hierarchies for sequential and parallel Prolog architectures.
A trace-driven simulator is used to measure local memories. Sequential Prolog
programs are compiled into the W AM instruction set and emulated, producing a
memory-address-trace file. Restricted AND-Parallel (RAP) Prolog programs
[34] are compiled into the PW AM instruction set [35] and similarly emulated,

www.manaraa.com

INTRODUCfION 3

assuming a shared memory multiprocessor with a small number of tightly
coupled high-performance processing elements. Main memories are evaluated
with asymptotic queueing models.

This book synthesizes logic programming architecture design with the
lessons learned from procedural programming architecture design and memory
organization. The field of logic programming machine design is new. It is
therefore not surprising that little has been published in the area of logic
programming machine performance. The vast store of knowledge and folklore
available about procedural language architectures and machines is absent for
logic programming languages. This book helps fill this gap.

In this book, successive refinements of models of abstraction allow the
measurement of the expected memory performance of both sequential and
parallel logic programming languages on host processors. The initial level of
abstraction is the Prolog source language, leading to canonical interpretive forms
(CIFs) for Prolog. These canonical architectures are refined into realizable
architectures (Direct Correspondence Architectures - DCAs), such as the W AM
and PW AM. Simulations of these architectures executing on a two-level
memory model produce memory bandwidth requirement statistics. Refinement
of the simple two-level memory model into a queueing model allows the
measurement of time dependent statistics, such as processor performance
degradation.

At the various levels of abstraction, important results are uncovered. At the
architecture level, it is shown that traditional CIF models can be constrained, at
little cost in performance, to CIFs more suitable for current technology hosts.
The W AM can be viewed as a DCA defined from such a constrained CIF. At the
memory simulation level, shallow backtracking is shown to be the primary
source of the W AM bandwidth requirement. The analysis of the efficiency of
several memory organizations at reducing the bandwidth requirement indicates
that caches offer the best memory performance - a result similar to that found
for procedural language processors [2]. Less costly memory organizations also
perform quite well, a result of the W AM's high locality. At the queueing
analysis level, PW AM is shown to exploit parallelism, on a tightly-coupled
shared memory multiprocessor, with little overhead with respect to the W AM. It
is shown, however, that even for a limited number (eight) of high-performance
processing elements, bus capacity is the critical performance bottleneck. This is
not to say that shared memory multiprocessors are an inferior design - on the
contrary, it is shown that with emerging bus technology and an interleaved
shared memory, this type of limited multiprocessor organization can achieve
significant speed-ups exploiting Restricted-AND Parallelism alone.

The primary contribution of this book is the successive refinement of

www.manaraa.com

4 MEMORY PERFORMANCE OF PROLOG ARCHITECfURES

architectures and performance models for logic programming languages,
resulting in an accurate description of their dynamic memory-referencing
behaviors. A summary of the detailed contributions of the book follows.

• A family of canonical architectures, called CIFs, closely
corresponding to Prolog, are described. Measurements of the CIFs
are presented, indicating the memory-performance bounds afforded
by attributes such as tight instruction-encoding, split-stacks and ideal
indexing.

• The memory-referencing characteristics of realistic Prolog programs
are determined. Evidence is presented indicating that shallow
backtracking is the primary memory-performance bottleneck of
environment stacking Prolog architectures.

• Local memories which reduce performance bottlenecks, for various
costs, are designed and analyzed. These memories include choice
point buffers, stack buffers, copyback data caches, "smart" copyback
data caches, instruction buffers, and instruction caches.

• Local memories which solve shared memory multiprocessor
consistency problems, specifically for the Restricted AND-Parallel
Prolog architecture PW AM, are designed and analyzed. These
memories include broadcast, hybrid, and write-through coherent
caches. The hybrid cache is a new combination of write-through and
write-broadcast cache designs, that takes advantage of RAP-Prolog
attributes to guarantee consistency with low overheads and
inexpensive hardware.

• Interleaved main memories, for both sequential and parallel
architectures, are analyzed with queueing model formulations of the
local memories.

In the remainder of this chapter, Prolog is fIrst introduced with examples.
Arguments are then given for studying high-level Prolog architectures, as
opposed to other alternatives. Lastly, previous work in the fields of architecture
design, benchmarking, and memory organization of logic programming
languages and machines is reviewed.

1.1. What is Prolog?

Prolog is the first practical logic programming language, designed by
Colmerauer in 1973 [70], with its theoretical groundwork laid by Kowalski in
1974 [44]. Prolog is the primary representative of logic programming languages
- most other logic programming languages are derivatives of the Prolog
computation model. To the first order, results of Prolog execution measurements
can be extended to Prolog-like languages and logic programming languages in
general.

www.manaraa.com

INTRODUCTION

isotree(void,void).
isotree(tree(X,Left1,Right1),

tree(X,Left2,Right2» '
isotree(Leftl,Left2),
isotree(Right1,Right2) .

isotree(tree(X,Left1,Right1),
tree(X,Left2,Right2» :
isotree(Left1,Right2),
isotree(Rightl,Left2) .

Figure 1-1: Prolog Program Example: isotree/2

5

Prolog programs and data are composed of terms. A term is either a simple
term or a compound term (also called a complex term or structure). A simple
term is either a constant or a variable. A structure consists of a functor and
arguments. The functor is composed of a name and arity (this is usually written
as namelarity). The name is the symbolic identifier of the structure, the arity is
the number of arguments, and the arguments themselves are terms. An example
of a structure is tree (1, void, Subtree), with functor tree/3. A
constant is a structure with zero arity. This may be a number or an atomic
identifier. Examples of constants are 1 and void. A (logical) variable is an
object which can be bound (only once) to another term. Prolog uses a capitalized
identifier to represent a variable, e.g., Subtree.

A Prolog program consists of collections of clauses known as procedures.
A clause is a term consisting of a head and a body. The head contains the formal
parameters of the procedure definition. The body consists of a (possibly empty)
set of goals. A goal is a procedure invocation with its corresponding passed
parameters. A procedure is uniquely specified by the name and arity of the head
of each of its clauses. The arity of a procedure represents the (fixed) number of
arguments it must be passed when invoked.

Figure 1-1 illustrates a program (from [78]) which determines if two trees
are isomorphic. The program consists of a single recursive procedure,
isotree/2, which has three clauses. The first clause has an empty body and is
called a unit clause or fact. The second two clauses are called conjunctive
clauses, non-unit clauses, or rules because they define relations between facts
and/or other rules. A third necessary program construct is a query, e.g.,

?- isotree(tree(l,tree(2,void,void),
tree(3,void,void»,X) .

In its simplest form, a query is a procedure invocation with external input, i.e., a
request to execute a program with given data.

www.manaraa.com

6 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

Prolog semantics can be viewed declaratively or procedurally. The
declarative view treats a procedure as a logical disjunction of its clauses and a
clause as a logical conjunction of its goals. This view benefits programmers.
Variables in queries are existentially quantified. For instance, the query given
above is read: "Does there exist a tree X such that the tree represented pictorially
below is isomorphic to it?"

1
/ \

/ \
2 3

Variables appearing in the head of a rule are universally quantified. Variables
appearing only in the body of a rule are existentially quantified. For instance, the
second clause of isotree/2 has an informal declarative reading: "Any two
trees are isomorphic if they both have the same value and the left subtree of one
is isomorphic to the left subtree of the other and the right subtree of one is
isomorphic to the right subtree of the other."

The procedural view treats a procedure as an ordered sequence of entry
points (clauses) which must be executed until one succeeds. A clause is treated
as an ordered sequence of procedure calls (goals), all of which must be executed
for success. Upon failure of any goal, the computation is backed up to the entry
of the most recently invoked procedure with unattempted clauses. That
procedure is re-entered at its next clause and the computation continues. The
main implementation distinction between Prolog and procedural languages is that
Prolog programs backtrack in this manner.

The procedural semantics are derived from the observation that to solve an
existential query Q with a universal fact P, one finds a common instance C, i.e.,
two substitutions, 't1 and't2' such that C = P't1 = Q't2' There are two deduction
rules in effect here: generalization - an existential query is a logical
consequence of an instance of that query, and instantiation - an instance of a
universally quantified fact is a logical consequence of that fact. The combination
of these rules is called resolution.

Generalizing, the query Q is a logical consequence of program P with the
universal rule A :- B 1.B2, .. .Bn, if A and Q have a common instance and B l' B2, ...

Bn are also logical consequences of P. This is called Horn clause resolution,
developed by Robinson [66]. In other words, a goal is executed by attempting
resolution with the heads of the clauses of the procedure of the same name and
arity as the goal. Successful resolution involves successfully unifying each goal
argument to each corresponding head argument. Unification finds a most
general common instance of its input terms to avoid specializing the proof more
than necessary.

www.manaraa.com

INTRODUCTION 7

If the goal cannot match (unify with) any clause of its associated procedure,
the goal fails. When the goal matches a clause and it can be determined that no
other clauses can match, it is called determinate execution. When the goal
matches a clause and other (untried) clauses can possibly also match, it is called
nondeterminate execution.

The scope of a variable is a clause; therefore the occurrences of X in the
second and third clauses of -isotree/2 in Figure 1-1 are unrelated. The goal
isotree (tree (X, void) ,void) can successfully resolve with the heads of
either the second or third clauses. Note again that the scopes of the X in the goal
isotree (tree (X, void) ,void) and the X in the clause heads are
independent, and therefore these two variables are unique and can be bound to
distinct objects. The goal isotree (void, void) can match only the first
clause and the goal isotree (X, Y) can match any clause.

For convenience and efficiency, Prolog has been given additional support
for:

• lists - a list, which is a structure with functor . /2, is given a
special syntax in Prolog. The list ' .' (X, Y) can be written as
[XIY]. A list of two objects, '.' (1,'.' (2, []» can be
written as [1, 2]. Note that [] is a special constant representing
nil (end-of-list). In most tagged Prolog architectures, including the
ones considered in this book, the list data type is given a unique tag.

• built-ins - many procedures are predefined in Prolog. The most
frequently used of these include arithmetic, construction and
destruction of terms, conditional tests for types of terms, and strict
equality (wherein no unification is allowed to take place).

• cut - this is an extra-logical control feature, represented by .. ! ",
used to prevent undesired backtracking over the clauses in a
procedure. As a goal in a clause of a procedure, cut always
succeeds, causing a side effect of disallowing subsequent clauses of
that procedure to be tried in the event of backtracking.

As another example, Figure 1-2 shows the most commonly executed Prolog
procedure in the QC 1 benchmark measured later in this book. The
flattenCode/3 procedure flattens a binary tree structure into a list removing
empty sequences represented by the atom void, e.g., the query

?- flattenCode«l, (2,3,void, (4,5») ,X, []) .

instantiates X to the list [1,2,3,4,5]. Read procedurally, flattenCode/3
recursively processes the left and right branches of a subtree, using a difference
list (see [78, p. 239]) to collect the resulting leaves. The second and third
arguments of the procedure represent the difference list as an answer list and the
tail of the answer list, facilitating efficient concatenation of the resulting sublists
from the left and right branches. This method of concatenation is illustrated in
the second clause, where the answer is composed by instantiating the tail of the
first sequence's flattened list, Codel, to the second sequence's flattened list.

www.manaraa.com

8 MEMORY PERFORMANCE OF PROLOG ARCHITECl'URES

flattenCode (void, Code, Code) :- !.
flattenCode«Seql,Seq2),CodeO,Code). !,

flattenCode(Seql,CodeO,Codel),
flattenCode(Seq2,Codel,Code).

flattenCode(Instr, [InstrICode],Code).

Figure 1·2: Prolog Program Example: flattenCode/3

Read declaratively, flattenCode/3 specifies three rules concerning
flattening. The result of flattening an empty sequence is an empty difference list.
The result of flattening a binary tree, (Seql, Seq2) , is CodeO (with tail
Code), if flattening the left subtree, Seql, results in CodeO (with tail Codel)
and flattening the right subtree, Seq2, results in Codel (with tail Code). The
result of flattening anything else, Instr, is a list with head Instr and tail
Code.

1.2. Why Prolog?

This book discusses how to make Prolog programs execute quickly. In this
section the selection of Prolog as a target language, and a high-level Prolog
architecture as a target instruction set, are justified. Three arguments are given:
for designing complex instruction architectures over reduced instruction
architectures, for analyzing Prolog instead of a committed-choice
nondeterminism logic programming language, and for choosing Prolog over
Lisp, a popular functional language.

1.2.1. Reduced Instruction Set Architectures

An alternative approach to increasing the execution speed of logic programs
is to translate the high-level architecture into a lower-level target or host
instruction set. For instance this host can be a reduced instruction set computer
(RISC) [63, 61, 81]. The goal of reduced instruction set machines is to simplify
the instruction set, allowing more effective compiler optimizations and
streamlined hardware. For the most part, results of this book are applicable for
any host. Exceptions are results concerning instruction referencing

www.manaraa.com

INTlI.ODUCfION 9

characteristics. In the case of instructions, a microcode implementation of a
high-level architecture cannot be easily compared to a reduced instruction set
architecture.

Reduced instruction set architectures were originally designed for current
hardware technology, procedural languages and general purpose applications. It
is argued here that such architectures are not necessarily as well-suited to
advanced hardware technology and symbolic processing applications, as are
high-level instruction set architectures. First instruction referencing, then data
referencing characteristics are considered.

Given advanced (denser) hardware, the benefit of a reduced instruction set
and a corresponding necessarily large instruction cache is not clearly superior to
a complex instruction set and a corresponding necessarily large micro-store.
Prolog code, when compiled into a reduced instruction set, expands to a size
incompatible with current on-chip (reduced instruction set machine) instruction
caches. Borriello et al. [8] report that to achieve similar miss ratios, SPUR, a
reduced instruction set microprocessor [81], requires significantly larger caches
than would the PLM, a microcoded complex instruction set machine [21].

General purpose applications and procedural languages have certain
attributes, such as high locality, not shared by symbolic processing applications
and applicative languages. For example, in this book (Section 4.2.6), it is found
that for a 1024 word copyback data cache (with a four word line size), typical
Prolog programs display four times the traffic ratios of typical Pascal programs.
Most reduced instruction set machines rely on high locality to allow their
pipelines to operate efficiently. The specialization of the architecture, to
incorporate attributes such as tags (e.g., SPUR) and shadow registers (e.g.,
Pegasus [71]), is necessary to reduce the data bandwidth requirement.

The critical resource is the available on/off chip bandwidth. The gap
between Prolog and conventional RISC architectures is so great as to make the
available chip bandwidth intolerable. Complex instruction set architectures,
specialized for Prolog, reduce the gap to a reasonable level, thereby reducing the
bandwidth requirement.

These arguments aside, assume that a reduced instruction set host can be
made to execute Prolog programs faster than a microcoded implementation of a
high-level architecture. Raw speed of compiled. optimized programs does not in
itself solve the software crisis. The software crisis refers to the growing
complexity and cost of developing applications. High-level architectures allow
the use of relatively simple (and therefore fast) compilers. In addition,
decompilation for symbolic debugging is facilitated by high-level architectures.
The application development cycle involves multiple recompilations. as well as
debugging of code. Both of these activities are supported by a single high-level

www.manaraa.com

10 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

architecture host. Although two different machines can be used for the purposes
of application development and delivery, this is not a reasonable solution except
for the largest commercial applications.

1.2.2. Parallel Logic Programming Languages

Parallel logic programming languages are of considerable interest for
attaining high performance on future multiprocessors. Gupta et al. [33] and
others have shown, however, that unlimited parallelism does not exist in many
application programs. Therefore, as with conventional multiprocessors, one
performance bottleneck will be the speed of sequential execution of a single
processing element.

Many parallel logic programming languages are based on committed-choice
nondeterminism, wherein once a clause head (and an extension to the head,
called the guard, consisting of simple goals) succeeds, the procedure commits to
that clause and will not backtrack. This weakening of the logic programming
paradigm once again increases the gap between the application and language. In
addition, the storage models required by committed-choice languages cannot be
implemented as efficiently on sequential processors as sequential languages, such
as Prolog. Committed-choice-Ianguage architectures are based on the hypothesis
that the amount of parallelism uncovered by the language will outweigh any
inefficiencies incuITed in single processor execution.

There is no doubt that mUltiprocessor execution is of the utmost importance
in increasing logic programming performance. The view taken in this book is in
agreement with Butler et al. [11], Hermenegildo [35], and others, who propose
parallel architectures for Prolog built around an efficient sequential architecture,
i.e., storage model. These architectures are based on the hypothesis that the
efficiency of single processor execution outweighs the restricted amount of
parallelism uncovered by the language. Local and shared memory design and
modeling for one such parallel architecture are presented in this book.

1.2.3. Lisp

Lisp, a symbolic language based on function application [51,77], is both
more popular and more mature than Prolog. Studies of Lisp architecture
performance have been conducted [29] and Lisp machines built (e.g., Symbolics
3600 [80], SPUR [81]). There are two primary deficiencies with Lisp as

www.manaraa.com

INTRODUCTION

program
Boyer
Deriv
Puzzle
Tak:

t native code

Sun
Common Lispt

15.08 sec
4.24 sec
8.44 sec
0.47 sec

:\: emulated byte-code

Quintus
Prolog:\:
25.50 sec
6.30 sec
2.43 sec
4.59 sec

Lisp: Prolog
0.59
0.67
3.47
0.10

Table 1·1: Lisp vs. Prolog: Sun-3/160 Comparison

11

compared with Prolog - both stemming from the evolution of Lisp (e.g., to
Common Lisp). Lisp programs, as written by most programmers (see, for
instance, the benchmarks presented in Gabriel [29]), have no declarative reading,
and are not applicative. The first deficiency reduces the reliability, readability
and extensibility of Lisp programs. The second deficiency reduces the ability to
parallelize a Lisp program, either automatically or by the programmer. Although
these arguments are common in the literature, here a third argument is
introduced.

It is argued below, with evidence presented in Tick [83], that as a result of
increased functionality (over Lisp), Prolog holds more promise than Lisp for
future high-speed processors. Studies of Prolog performance as compared with
Lisp [59, 92] have been favorable to Prolog. In Tick [83] evidence is given that
Prolog has greater semantic content than Lisp. Two results are given based on
the assumption that memory bandwidth is the ultimate performance measure.

The first result is that Lisp is better mapped onto current machines than
Prolog. This is tenuously supported by comparisons between commercially
available Lisp and Prolog systems, executing a subset of the Gabriel benchmarks
as shown in Table 1-1. Although "apples vs. oranges," comparing these
implementations serve to indicate that Lisp runs faster than Prolog on hardware
with a limited number of state registers. Whether Prolog can reach Lisp
performance on conventional machines is primarily dependent on how much of
the Prolog state can be contained in available state registers, and if Prolog
compilers of the same level of sophistication as those used for Lisp can be built.

The second result is that Prolog has a greater potential to exploit the
additional state and state transfers advanced hardware can offer. The high
semantic content or potency of a language is indicated, for a given program, by a
high mean number of memory references per instruction executed and a low total
number of instructions executed. From the statistics shown in Table 1-2, Prolog

www.manaraa.com

12 MEMORY PERFORMANCE OF PROLOG ARCHITECruRES

Tak Boyer
Lisg Prolog LIP Lisg Prolog LIP

instructions 683792 811008 9093949 4011264
data ref 667891 508865 1.31 8200807 5752632 1.43
instr ref 747401 938226 0.80 12078345 4555707 2.65
data ref/instr 0.97 0.63 0.90 1.43
instr ref/instr 1.09 1.16 1.33 1.14

Deriv Puzzle
Lisg Prolog LIP Lisg Prolog LIP

instructions 598 277 12172280 525650
data ref 515 537 0.96 3711662 842468 4.41
instr ref 708 366 1.93 15759345 617679 25.5
data ref/instr 0.87 1.94 0.30 1.60
instr ref/instr 1.19 1.32 1.29 1.18

Table 1-2: Lisp vs. Prolog: Abstract Machine Comparison

displays greater potency than Lisp because the functionality of backtracking and
unification are integrated into Prolog and its architecture.

In summary, to reduce the execution time of a given application, one wishes
to both

• reduce the gap between the architecture and the language .

• increase the semantic content of the language, increasing its
performance potential.

As shown, available hardware and compiler technology constrains these criteria,
currently favoring Lisp. Future technology may well favor Prolog.

1.3. Previous Work

1.3.1. Architectures

Flynn and Hoevel [27, 26] derived the theory of ideal language machines for
FORTRAN. Wakefield [91] implemented this theory by designing and
measuring ADEPT, a direct correspondence architecture (DCA) for Pascal. This
book extends these concepts from procedural languages to applicative, logic
programming languages, specifically Prolog. The step to Prolog is much larger
than from FORTRAN to Pascal, because of attributes such as single-assignment,

www.manaraa.com

INTRODUCTION 13

nondeterminism, pointers, and unification. The singular contribution of the ideal
Prolog architecture is the inclusion of a two-level name space (registers and
memory), displaying superior memory-referencing characteristics under
assumptions of a less costly host.

Sequential Prolog architectures designed by D.H.D. Warren [93, 96], Byrd
[9], and Bowen [10] are called environment-stacking architectures. These

models utilize a stack holding local procedure variables in frames called
environments. These architectures have been designed in the traditional manner,
as evolutionary improvements from interpreter to compiler to abstract machine
model. A contribution of this book is to show how the theory of ideal language
machines is another equally valid design methodology, resulting in the same
high-performance Prolog architectures.

PW AM, designed by Hermenegildo [35], is an AND-parallel Prolog
extension of the W AM. The PW AM model extends the initial work in Restricted
AND-Parallelism by DeGroot [18], by developing an efficient architecture with a
viable backtracking semantics. A contribution of this book is the measurement
of the memory-referencing characteristics of PW AM executing on a shared
memory multiprocessor. It is shown that PW AM's memory efficiency compares
well with the W AM for sequential code and that PW AM has low communication
overheads for parallel code.

1.3.2. Benchmarking

Many studies of both the static and dynamic characteristics of Prolog
programs have been undertaken. Warren [93] measured the execution time of
small Prolog programs to compare the performance of DEC-tO Prolog with the
performance of various other programming languages. This was one of the first
sets of Prolog benchmarks published with performance measurements. Wilk
[98] measured the execution time of small, synthetic Prolog programs to

compare different systems. He discusses the important attributes of a Prolog
system, ranging from garbage collection to debugging capabilities.

Ross [68, 69] measured the memory-referencing behavior of small sequential
Prolog programs. In contrast to this book, he studied the Prolog working set, i.e.,
page referencing characteristics, between main memory and backing store.
Prolog was found to have a larger working set than typical C programs. A
Prolog paging strategy was designed which avoids transferring pages not
belonging to the current valid storage areas (as defined by stack pointers, etc.).
For compiled programs, this reduced page traffic by a factor of two over a
conventional paging strategy.

www.manaraa.com

14 MEMORY PERFORMA!,(CE OF PROLOG ARCHITECTURES

Matsumoto [50], Ratcliffe [64], and Onai [60] performed static analysis of
large Prolog programs (including versions of the CHAT and PLM benchmarks
used in this book). They measured several attributes such as the number of cuts
per clause, and the number and type of built-in goals per clause. These high
level statistics were aimed at evaluating compiler techniques, but not at directly
analyzing the performance of the programs. Since static code was measured,
these statistics don't necessarily reflect runtime behavior. Nor were these high
level analyses based on architecture models, as is done in this book.

Ratcliffe measured parallelism metrics from static benchmarks to determine
the amount of potential concurrency. Onai also measured parallelism metrics
from two dynamic benchmarks. These high-level analyses were also not based
on architecture models. Dobry [21], however, measured the execution time and
simple memory-referencing characteristics of small Prolog programs, to illustrate
the effectiveness of the PLM architecture. This work was extended by Touati
[86] to include several larger benchmarks, including versions of the CHAT and

ILl benchmarks used in this book. Touati's study presents measurements of
detailed high-level characteristics of the PLM, such as cdr-coding efficiency,
with the aim of evaluating compiler optimization strategies. Many of the results
presented confirm those in this book. Note that although the PLM was built, the
studies cited above used simulation for their measurements.

Hermenegildo [35] measured the performance characteristics of small,
synthetic benchmarks to illustrate the effectiveness of the PW AM architecture.
His analysis assumed an idealized shared memory organization and emphasized
high-level-architecture characterization. This book extends this work by
analyzing PW AM memory-referencing characteristics assuming a realistic shared
memory multiprocessor organization.

1.3.3. Memory Organization

A few comparative sequential Prolog hardware studies have been conducted
[8,54,31] and several Prolog machines built [41, 57, 58, 56, 21,71]. The Kobe

University PEK machine [41] compiles Prolog into horizontal microcode that is
executed from a writable control store (WCS). The PEK architecture is similar
to that of DEC-lO Prolog [93]. In addition to a 16K (by 96 bit) WCS, the PEK
also incorporates a 4K (by 34 bit) stack buffer, 16K (by 34 bit) heap buffer, and
16K (by 14 bit) trail buffer.

The ICOT High-speed Prolog Machine (HPM or Chi) instruction set is a
derivative of the W AM [57]. The HPM incorporates an 8K (by 36 bit), 4-way set
associative write-through VD cache. Two ICOT Personal Sequential Inference

www.manaraa.com

INTRODUCTION 15

(PSI) machines have been designed. The PSI-I [58] is a microcoded interpreter
for KLO, a simple compiled form of Prolog. PSI-I is equipped with an 8K (by 40
bit), 2-way set associative copyback liD (combined instruction, data) cache. The
PSI-II [56] instruction set is a derivative of the W AM. It incorporates a 4K (by
40 bit), directly mapped copyback liD cache. The PSI-II incorporates a "write
stack" operation which avoids fetching the next (invalid) word at the top of stack.
This is a limited example of the more general "smart cache" described and
analyzed in this book.

The UC Berkeley Programmed Logic Machine (PLM) is a pipelined,
microcoded Prolog machine [21,20]. The machine instruction set is a derivative
of the W AM. The PLM incorporates a fixed-size single choice point buffer, a
look-ahead instruction buffer, and a write buffer (to queue outstanding write
requests). The Xl [22], a version of the PLM built by Xenologic Inc., includes
two directly mapped 64K (32 bit) word caches (separating instructions and data)
without the choice point buffer. The local memories simulated in this book are
smaller (up to 1024 32-bit words) than those in the machines previously
described. The intention is to model local memories that can be integrated with
the CPU.

The Mitsubishi Pegasus is a pipelined, RISC microprocessor for Prolog [71].
The tagged, load/store architecture incorporates a shadow register set, similar to
that suggested in this book. Measurements made of small benchmarks running
on Pegasus indicated that the shadow registers can improve program
performance by up to 17% [71].

The Hitachi IPP [1] is a pipelined, microcoded Prolog machine. The
instruction set is a derivative of the W AM. The IPP incorporates a four word
instruction prefetch buffer, write-through cache, and write buffer. Processor
performance has been simulated for small programs, indicating that advanced
indexing techniques and global register allocation can give speedups of up to 3.4
times that of unoptimized code. Optimizations similar to these are discussed in
Chapter 2.

Borriello et al. [8] described and measured the execution of Prolog on
SPUR, a microprocessor with a tagged RISC architecture. 14 small Prolog
benchmarks were executed on the SPUR and PLM simulators, allowing
comparison of execution cycles. The results indicated that number of SPUR
cycles executed was 2.3 times that of the PLM. The number of SPUR
instructions executed was 16 times greater than the PLM. Borriello concludes
that assuming similar memory configurations for PLM and SPUR, the SPUR can
achieve 66% of PLM performance, if minor tag modifications and compiler
improvements are made to SPUR.

Mulder and Tick [54] described and measured the execution of Prolog on an

www.manaraa.com

16 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

MC68020 microprocessor. Approximation methods were used to compare PLM
and MC68020 execution cycles for three large benchmarks (the instruction
frequencies presented in Appendix B of this book were used to estimate the
number of execution cycles). The results indicated that assuming equivalent
main memory speeds, the number of MC68020 cycles executed was 2.5 to 3.5
times that of the PLM.

Gee, et al. [31] microcoded a V AX 8600 general-purpose computer to
directly emulate W AM instructions. They found that 85% of the PLM execution
performance could be obtained for simple benchmarks. Because a general
purpose host was used, high-performance numeric computation was also
achieved.

Studies in memory organizations for high-level procedural language
architectures include the works of Alpert [2] and Mitchell [53]. Alpert described
and measured the data memory performance of contour buffers and copyback
data caches for Pascal architectures. The contour buffer is similar in function to
the stack buffer presented in this book. Alpert's cache simulator is used here to
make uniprocessor copy back cache measurements, and has been extended to
model write-through caches. Mitchell described and measured instruction cache
performance for a wide range of architectures. Pascal benchmarks were
simulated, providing performance metrics with which to compare architectures.

Cache studies for traditional architectures are numerous. Most heavily
referenced in this book are works by Smith [75], Bitar [6], Archibald [3], and
Hill [38]. Smith and Hill present detailed studies of uniprocessor cache design
and performance. Bitar and Archibald present detailed studies of multiprocessor
(coherent) cache design and performance. This book extends these studies by
analyzing cache performance for logic programming language architectures.

1.4. Book Outline

This book assumes familiarity with Prolog (refer to [78] for instance).
Detailed knowledge of the W AM and PW AM instruction sets are not necessary.
These architectures are reviewed in the Chapter 2, although the interested reader
is referred to Warren [96] and Hermenegildo [35], respectively, for complete
details.

The body of this book contains four parts. The first part, Chapter 2,
describes a family of Prolog architectures defined from the principles of
canonical high-level language architectures. Prolog Canonical Interpretive

www.manaraa.com

INTRODUCfION 17

Forms (CIFs) are introduced which have attributes with certain "ideal" qualities
not present in the W AM. The W AM is introduced from a historical perspective
of DEC-lO Prolog and its variants. PW AM, chosen for later multiprocessor
performance measurements, is also reviewed.

Chapter 3 presents the tools and benchmarks used to make empirical
measurements of memory models introduced in Chapter 4. The W AM, Prolog
CIFs, and PW AM memory-referencing characteristics are presented and
compared.

Chapter 4 presents two-level memory hierarchies well-suited for sequential
Prolog architectures. Local memory models are described and measurements are
presented. The local memory designs are generalized into parameterized
queueing models for main memory design. These models are evaluated, giving
the bandwidth efficiency of both the main memory and the memory bus, and the
expected processor performance degradation due to the local memory miss
penalties, aggravated by main memory contention.

Chapter 5 presents memory hierarchies well-suited for parallel Prolog
architectures, specifically PW AM. Shared memory multiprocessor consistency
problems for PW AM are outlined and local memory models are presented which
solve these problems. The queueing models previously introduced are extended
to describe shared memory multiprocessors.

Finally, Chapter 6 presents conclusions drawn from the research and points
to directions for future research.

www.manaraa.com

2 Prolog Architectures

This chapter describes a family of high-level instruction set architectures for
the Prolog language. The Prolog architecture family is canonical, i.e., it is
defined from the semantics of Prolog in the tradition of Flynn and Hoevel's work
on canonical architectures for procedural languages [27]. The most notable
member of the Prolog architecture family is the Warren Abstract Machine
(W AM) architecture [96], currently implemented on general purpose hosts via
native-code (e.g., Tricia [14]), interpretation (e.g., Quintus Prolog [62]),
microcoded interpretation (e.g., on the V AX 8600 [31]), and on dedicated hosts
(e.g., the UC Berkeley Programmed Logic Machine (PLM) [21] and the ICOT
PSI-II [56]).

The canonical Prolog architecture family includes attributes such as ideal
indexing (a model for directly selecting the correct procedure entry point in a
nondeterministic procedure invocation) and tight instruction encoding. Although
not all of these attributes are realizable, they indicate upper bounds on sequential
execution performance. In addition, they can be used constructively to aid in the
design of realizable architectures on current hosts. It is shown that the W AM is
such an architecture, i.e., the W AM instruction set closely corresponds to the
Prolog source language. Results are presented indicating the extent to which the
W AM achieves the canonical measures.

An alternative introduction to the W AM architecture is also presented by
means of its historical ancestor, the DEC-I 0 Prolog abstract machine (Prolog-l 0)
[93]. These two architectures are compared in the area of memory performance.

Evidence is presented suggesting that the W AM achieves its goal of optimizing
the execution of determinate code (with respect to Prolog- 10), at the cost of
slower nondeterminate execution. The performance difference (in terms of
memory references made) is greatest for shallow backtracking programs.

Finally, an overview of the Restricted AND-Parallel Prolog architecture
(PW AM) [35] is given. In the next chapter, memory-referencing characteristics

www.manaraa.com

20 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

of these architectures are presented and the relative merits of their attributes are
compared.

2.1. Canonical Prolog Architectures

In this section, terminology is introduced with which canonical Prolog
architectures are defined. These architectures are informally called Prolog
canonical interpretive forms (CIFs). The importance of studying these
architectures is then given. Metrics for measuring the characteristics of CIFs are
introduced. Detailed definitions of the CIF architectures and metrics are given in
subsequent parts of this section.

A (sequential) machine, used to execute a program (i.e., a set of
instructions), is defined as the combination of an interpretive mechanism and a
store. The machine is called the image machine or abstract machine model. The
store or image store is often called the storage model. The interpretive
mechanism is often called the execution model and can be implemented with
another machine, called the host machine. Architecture, as defined in this book,
is the image machine instruction set semantics, i.e., how the interpretive
mechanism updates the image store during program execution.

The name space of the architecture is the set of (data and instruction) objects
that can be referenced by the instruction set. Prolog data objects are described in
Section 1.1. Each data object is given a name or identifier in the source program.
Recall that in a Prolog program, variable names are capitalized, and thus easily
distinguishable from constants. The (lexical) scope of an identifier is the largest
program segment over which the identifier has a consistent definition. The scope
of a constant identifier is the entire program. The scope of a variable identifier is
only a single clause. In a one-level name space, as defined in this book,
instructions can only reference identifiers whose scope is visible from the
currently executing clause. In a two-level name space, instructions can also
reference identifiers from a register set.

A Prolog canonical interpretive form (CIF) is the measure of Prolog program
events which limit a machine architecture. Alternatively, a Prolog CIF is a high
level architecture directly corresponding to Prolog. Flynn and Hoevel
[26] developed the theory of canonical architectures and applied it to procedural

languages such as FORTRAN and Pascal (CIFs developed for these languages
are referred to as procedural CIFs in this book). The CIF models assume Von
Neumann hosts where the memory bandwidth between the processor and

www.manaraa.com

PROLOG ARCHITECTURES 21

memory is the primary performance bottleneck. Other types of hosts, e.g.,
dataflow machines, are not considered.

A two-phase evaluation model is assumed here, as in Flynn and Hoevel [27].
In the first phase, the Prolog source program is translated into an intermediate
form, the Prolog CIF, with a compiler. In the second phase, the Prolog CIF is
interpreted by the host. The purpose of defining a Prolog CIF is three-fold.

• The CIF execution performance gives the best case program
performance because memory referencing is minimal and stability
(lack of disruption of sequential interpretation, e.g., taken branches)
is maximal. The CIF is ideal only in the sense that the elF
corresponds closely to the source program, so that the elF does not
limit the source program performance. Given a direct
correspondence, source-to-source compiler optimizations (not
investIgated here) can improve upon the elF performance.

• The CIF attributes, although not totally realizable, can be used
constructively to implement high-performance architectures. Flynn
and Hoevel have termed these architectures direct correspondence
architectures (DCAs).

• The description of the Prolog CIF can be viewed as an exposition
and justification of the W AM model [96].1 The W AM is considered
a Prolog DCA.

Flynn and Hoevel [26] define five design criteria for a canonical architecture:
1. transparency (1:1 rule) - the source and CIF correspond closely

to one another.
2. size - the CIF data and instruction objects are as concise as

possible.
3. referencing - a minimal number of objects are interpreted.

4. stability - there is minimal disruption of sequential interpretation.
5. distance - a minimal number of unique objects are interpreted.

Each criteria defines a measure that must be optimized to attain the CIF. The
optimality of these measures cannot be guaranteed for all programs written in the
source language. For instance, given knowledge of a program, an object
encoding may be developed requiring less space than the CIF (which is designed
without specific knowledge of the program). The variance in CIF attribute
optimality is greater for Prolog than for procedural CIFs because the use of
dynamic data structures and nondeterminate execution is highly program
dependent in Prolog.

The first two criteria comprise the static measures of an architecture. The
last three criteria comprise the dynamic activity measures of an architecture. The

1 For another method of justifying the W AM, see Kursawe [46].

www.manaraa.com

22 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

dynamic measures are meant to reflect execution performance on three classes of
machine: low-end, high-end, and confluent (unlimited hardware). Distance is
not discussed here.

In the following sections three ClF models are described in terms of the ClF
metrics above. Measurements of the memory-referencing characteristics of these
models are presented in the next chapter. The first two ClFs, which are identical
in construction, are called the naive and traditional ClFs. They are informally
derived in a manner similar to the formal derivations of Flynn [27] and
correspond closely to Prolog. The naive model is inefficient because a memory
reference is required for each identifier referenced in the program. The
traditional ClF's data traffic is analyzed assuming a more sophisticated host. In
this case, a memory reference is no longer required for a reference to an identifier
in the current scope. With the new analysis, the traditional model performs
significantly better than the naive model, reducing data references by about 79%,
but the underlying assumptions are shown to be costly to implement for Prolog.
A register-based ClF is then described, incorporating a two-level name space.
Under the assumptions of a less costly host, the register-based ClF performs
reasonably well, reducing the naive ClF data bandwidth by about 14%.

2.1.1. elF Data Encoding

In this section, the encoding of data objects used in the ClF architectures is
described. The data objects manipulated by the Prolog ClF correspond directly
to the objects manipulated by a Prolog source program. ClF data objects are
encoded to correspond to the requirements of large Prolog applications programs
executing on typical hosts. These programs reference many unique atoms, and a
large number of data objects. Data objects or terms are composed of words, the
indivisible unit of image storage. A word has a tag and a value, i.e., the ClF is a
tagged architecture. Tags are necessary to dynamically distinguish between
different types of data objects in order to implement unification, the fundamental
Prolog operation.

A simple term (constant or variable) occupies a single word. An indirect
reference or pointer to a term also occupies a single word. The indirect reference
type is necessary to implement shared Prolog variables (see Section 2.1.2). An
unbound variable is defined as an indirect reference to itself This allows
creation of a reference to an unbound variable by simply copying (verbatim) that
value to another location. Although the ClF definition does not constrain the
word size, the measurements made in this book assume a 32 bit word to facilitate
comparison between the ClF and the W AM. The 32 bit words permit a large

www.manaraa.com

PROLOG ARCHITECTURES 23

number of unique atoms and a large number data objects in the Prolog image
store.

Compound terms (structures and lists) cannot be encoded in a single word.
As a result, when binding a variable to a complex term, an indirect reference is
required, pointing from the variable to the term. To speed up unification of
compound terms, indirect references to compound terms are given tags indicating
the type of the compound term. Specifically, a structure is encoded as an indirect
structure reference to a functor word, followed by a single word for each

argument (lists are described below). Note that a single word is allocated for
each structure argument. For a simple structure (with simple terms as
arguments), this is sufficient. A structure which is composed of structures uses
indirect references to link complex arguments to encompassing structures. Note
that indirect references to simple terms and to other indirect references do not
indicate the type of the dereferenced value. This facilitates binding a variable
because pointers to the variable do not have to be updated to indicate the
variable's new value type.

A list is a special type of structure with two arguments. Lists are encoded as
an indirect list reference directly to the head of the list. The subsequent location
is the tail of the list. In a legal list, the tail is either another list reference or the
constant nil signifying the end of list. Lists are not cdr-coded in the Prolog CIF
to reduce the complexity of the architecture. Preliminary measurements
indicated that cdr-coding saved an insignificant number of memory references
for the benchmarks studied in this book. This has also been confirmed for the
PLM architecture by Touati [86].

2.1.2. Naive and Traditional Prolog CIFs

In this section, a traditional Prolog CIF is defined from the semantics of
Prolog. The CIF is called "traditional" because it is largely based on the
procedural language CIFs of Flynn, in contrast to the "register-based" CIF
introduced in Section 2.1.3. The naive CIF is identical to the traditional CIF with
the exception of the underlying host assumptions. These differences are
discussed later in this Section. A Prolog CIF consists of an instruction set and its
corresponding semantics with respect to a storage model. The following sections
define the traditional CIF storage model and the instruction set. The traditional
model is instructive because it corresponds closely to Prolog and clarifies the
later description of the register-based CIF.

www.manaraa.com

24

HEAP

structure

MEMORY PERFORMANCE OF PROLOG ARCHITECfURES

ENV
STACK

frame

TRAIL

a ress

EJ
Figure 2·1: Traditional Prolog CIF Storage Model

elF Storage Model

In this section, the traditional Prolog CIF storage model is defined. The
storage model cOITesponds directly to the storage constraints imposed by Prolog
semantics. It is argued that the storage model is "ideal" in the sense that it does
not constrain reasonable host implementations. An overview of the CIF storage
model is illustrated in Figure 2-1. The model is a variant of the three-stack
model introduced in DEC-10 Prolog [93] . The code space is a static area holding
the CIF program. The heap, stack, and trail are dynamic areas managed in stack
like manners. The thick arrows in Figure 2-1 represent typical indirect data
references. The thin arrows represent typical management pointers. Only the
most important connections from one area to another are shown. These
connections and the individual areas are described below.

The storage model is centered around the frame (this notation is retained
from the DEC-tO Prolog architecture) which holds all identifiers referenced
within a scope. The frame is similar to a contour in procedural CIFs. A Pascal
contour, for instance, contains labels, constants, local variables, pointers to non
local variables, pointers to global variables, and arguments passed to the
procedure [91]. A single-level name space is used, wherein the instruction set
references all objects via contour indices. This minimizes operand size, thereby
minimizing instruction size. Unlike procedural languages, there are no non-local
or global objects in Prolog, so these are not present in the frame. In addition,

www.manaraa.com

PROLOG ARCHITECTURES 2S

Prolog does not reference labels and constants in a clause multiple times, mainly
because recursion is used instead of iteration. These objects are directly encoded
in the instruction stream as immediate operands. The remaining objects in a
frame, collectively referred to as frame variables, are local variables, and
arguments passed to the procedure. In addition, the traditional Prolog CIF frame
also contains state information necessary to implement nondeterminate procedure
execution.

Nondeterminate control flow or backtracking in Prolog is the action of
selecting the most recent entry point with alternatives for a procedure invocation,
restoring the state of the computation at that point and resuming execution there.
Abstractly, the alternatives are called branch points because they represent
OR-branches in the AND-OR tree representing the Prolog proof.2 A unique
frame is created for each procedure invocation. If a branch point is reached, the
frame is loaded with additional state values necessary for nondeterminate
program execution. A possible optimization avoids allocating space for these
values in the frame until it is known if the procedure invocation is a branch point.
This optimization is not of concern in the traditional CIF, because CIF memory
characteristics are measured in numbers of references, not locality.

Since clauses may be nested, multiple clauses may be active during program
execution, and therefore multiple frames must be managed. A frame stack is
utilized, similar to a contour stack in a procedural CIF. Thus the traditional
Prolog CIF is similar to the DEC-lO Prolog abstract machine. Unlike a
procedural CIF, a heap is also utilized, as described below.

A frame variable is allocated only a single word. Binding a frame variable to
a new structure (or list) is implemented by creating the structure on the heap and
indirectly referencing the structure from the frame. On the heap, objects live
until removed by failure.3 Splitting the allocation of simple and complex objects
onto the stack and heap is necessary because the space required by a scope for
complex objects cannot be determined at translation time. Consider a variable in
a clause which may be passed through arbitrary levels of procedure calls until it
is bound to a structure. Which structure cannot be determined statically, so the
variable's frame size cannot be calculated. Instead, these "excess" objects are
dynamically allocated on the heap.

The two essential control functions of nondeterminate execution in Prolog
are fail and cut. Therefore the CIF storage model must permit their efficient

2See Kowalski [45] for a discussion of the AND-OR tree.

3This is a simple view of the heap that avoids the issue of garbage collection but is sufficient
for the purposes of this book.

www.manaraa.com

26 MEMORY PERFORMANCE OF PROLOG ARCHlTEcrURES

implementation, i.e., minimal memory referencing, maximum storage
reclamation (maximum locality), and fast execution. With this motivation, the
Prolog CIF nondeterminate execution mechanism is now described and its
cOlTesponding storage model is shown to facilitate efficient fail and cut.
Restoring the original state of the computation in general involves the following:

• restoring the frames active at the most recent branch point.

• unbinding the values of variables bound since the most recent branch
point.

• restoring state variables active at the most recent branch point (e.g.,
stack pointers, etc.).

All frames in the stack corresponding to threads of execution leading to an
active branch point must be saved until that procedure fails or succeeds
unconditionally, i.e., until no alternative clauses exist for that procedure. Viewed
as an AND-OR tree, all frames on a path leading from the root to an active OR
node must be saved. The most efficient method of implementing this is to freeze
the stack (and heap) at each branch point, i.e., disallow deallocation of these
frames. Failure is permitted to unfreeze the stack, discarding the portions of the
stack and heap more recent than the last branch point. To implement this
efficiently, the frames corresponding to branch points (called branch point
frames) are connected in a chain.

To efficiently implement the task of unbinding variables during failure, the
address (called the trail address) of each variable bound since the branch point
must be saved. Since the number of such bindings is unknown at translation
time, the trail addresses cannot be allocated within the frame. Alternatively, the
trail addresses could be allocated on the stack as linked objects, independent of
the frames. However, it is far more efficient to store trail addresses on a separate
last-in/first-out (LIFO) stack, called the trail stack. The action of saving an
address on the trail stack is called trailing a binding. The trail stack also permits
efficient implementation of cut. Cut, like failure, manages the AND-OR tree.
Cut removes zero or more active branch point frames, allowing subsequent
backtracking to avoid executing OR branches that do not produce useful
solutions. Cut can also have the side-effect of deallocating stack frames. Cut,
however, cannot deallocate trailed addresses, which must be saved and detrailed
(the locations to which the addresses point must be unbound, i.e., set to unbound
variables) during the next failure.

elF Instruction Encoding

This section describes the traditional Prolog CIF instruction set and encoding

www.manaraa.com

PROLOG ARCHITECTURES 27

methods. eIF instruction and operand names are borrowed from the W AM
[96] to avoid obscuring the similarities between the two. A mapping for

algorithmic/scientific languages involves arithmetic operators and variables
within an assignment statement. In Prolog, the basic semantic operation is
unification of a source level argument with simple terms as operands.

For example, consider append/3, which can be used to append two lists:

append ([] , X, X) .
append([XIL1],L2, [XIL3]) '-

append(L1,L2,L3).

The first clause means that the result of concatenating a list, X, to the constant nil,
[], is list x. The first clause is a simple example that introduces many of the
correspondence subtleties. Since there are three source level arguments, three
unification operators are expected. Each operator is a specialized form of
general unification.4 For example, to match the first argument, the specialized
unification operator simply checks that the incoming argument is either unbound
or nil. If unbound, it is bound to nil. Other types of incoming arguments cause
the operation to fail. The second operator is specialized to match an unbound
local variable, so it cannot fail. In fact, matching the second argument, in this
case, requires no work (which is understood at the higher level of the declarative
semantics).

Matching the third argument translates into a single operator; however, the
operation entails an unknown (at translation time) amount of work, i.e., operand
fetches. X (the second and third arguments) is a shared variable because it
occurs multiple times within a scope. Shared variables can possibly cause
additional operands to be referenced from memory when the variables are
dynamically bound to compound terms and require general unification for
matching. Thus an accurate operand count cannot be ascertained from the static
code (c.f., procedural CIFs, where operator and operand counts can be statically
determined). The following query exhibits this type of behavior - the third
operator matches the first four elements of the lists before failure:

?- append([], [1,2,3,4], [1,2,3,4,5]).

The Prolog elF translates the unification of simple terms and one-level
structures into one instruction. Unifying a nested structure always requires one
or more additional instructions. A clause head is matched using get instructions
and the body goals are set up using put instructions. In the next paragraphs the
syntactic structures of get and put instructions are described and the informal
semantics are then given.

4See Lloyd [48] or Robinson [67] for general unification algorithms. See Tick [84] for the
unification algorithm used for the measurements presented in this book.

www.manaraa.com

28 MEMORY PERFORMANCE OF PROLOG ARCHlTEcrURES

The get instructions are composed of a source operand followed by at least
one destination operand. The put instructions are composed of a destination
operand followed by at least one source operand. Both sources and destinations
are frame variables, encoded as indices into the current frame.

The get destinations and put sources are tagged. These tags indicate the
format of the operand. In the case of get instructions with a single destination
(put: single source), the format can be incorporated into the opcode (as in the
W AM). In the case of multiple destinations (put: multiple sources), the formats
are separated from the opcode because each operand can have a different format.
The operands must be processed sequentially, from left to right, for COlTectness
because the compiler may introduce dependencies between the operands.

In general, get instructions match their source operand to their destination
operand(s). Destination operands may be tagged as var, val, or const. A get
instruction first checks the destination format. If var, it assigns the source to the
destination. If const, the source is compared to the destination. If val, the source
is unified with the destination.5 If the comparison or unification fails, the
instruction fails, i.e., the failure routine is invoked.

In addition to the get instructions is get_stet (get_list is simply an
optimized instance of get_stet). Unlike the previously discussed get
instructions, get_stet takes a variable number of static operands. If the
source is unbound, the operands are interpreted in write mode. If the source is a
structure, the operands are interpreted in read mode. Otherwise the instruction
fails. The source is matched to the first destination operand, which is a functor.
Then arguments of the source structure are matched to the succeeding destination
operands. Matching in write mode involves assignment to the heap. Matching in
read mode involves comparison of terms.

In general, put instructions assign their source operand(s) to their destination
operand. Source operands may be tagged as var, val, const, or unsafe. The val
and const operands are assigned to the destination. An unsafe source operand
must be moved onto the heap before assignment to the destination, to allow last
call optimization (described below). A var source operand must first be
initialized to an unbound variable in the frame before assignment to the
destination. This allows an optimization wherein the frame is not initialized
when allocated.

Some examples of elF code are given in Figure 2-2. Yi and Zi represent
caller and callee frame variables, respectively, at index i. It is assumed that Zi

5Prolog unification does not perform an "occurs check," thus a circular term (i.e., a term that
references itself) can cause an instruction to make an unlimited number of operand requests.

www.manaraa.com

PROLOG ARCHITECfURES

append ([] , X, X) .
get

% get
get
proceed

YO, const ([])
Yl, var (Yl)
Y2,val(Yl)

append([X\Ll],L2, [X\L3]) ;- append(Ll,L2,L3).
get list YO,var(Y3),var(YO)

% get- Yl,var(Yl)
get_list Y2,val(Y3),var(Y2)

% put YO,val(YO)
% put Yl,val(Yl)
% put Y2,val(Y2)

execute append/3

foo(f(a,b,g(X»,X) ;- bingo(f(a,X,Y,g(Y»).
% get

get_stct
get stct
put:=stct
put_stct
execute

Yl,var(Yl)
YO,f/3,const(a),const(b),var(Y2)
Y2,g/l,vaL(Yl)
YO,f/4,const(a),val(Yl),var(Yl),var(Y2)
Y2,g/l,val(Yl)
bingo/l

qsort([X\L],RO,R) ;- split(L,X,Ll,L2),
qsort (Ll, RO, [X \ Rl]) , qsort (L2, Rl, R) .

get list YO,var(Y6),var(ZO)
put- Zl,val(Y6)
put Z2,var(Y5)
put Z3,var(Y3)
call split/4
put ZO,unsafe(Y5)
put Zl,val(Yl)
put list Z2,val(Y6),var(Y4)
call qsort/3
put YO,unsafe(Y3)
put Yl,val(Y4)
put Y2,val(Y2)
execute qsort/3

Figure 2-2: Traditional Prolog CIF Clause Examples

29

www.manaraa.com

30 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

can be referenced with an offset from the top of stack. In contrast to a procedural
CIF, the Prolog CIF relies heavily on the optimization of removing no-operations
(e.g., qet Yl,var(Yl) and put YO,val(YO) - these are marked in
Figure 2-2 with "%").

Various control instructions are present in Figure 2-2. The call instruction
is used to invoke a procedure, after the caller loads the passed arguments on the
top of stack. Note that the top of stack is defined as the more recent of the
current frame and the current branch point frame. The callee allocates a frame
over the arguments passed from the caller. A large enough frame is allocated to
contain the maximum number of frame variables in all clauses possibly matching
a nondeterminate procedure invocation. Figure 2-2 shows only clause code, and
therefore frame allocation instructions are not given. Note that a nondeterminate
callee loads state infonnation into the frame during allocation. As previously
stated, these branch point frames are linked to efficiently implement fail and cut.

The proceed instruction causes simple procedure return. The execute
instruction returns through a procedure call. A nondeterminate procedure resets
its branch point frame to a standard frame when its last alternative clause is
entered. This facilitates frame deallocation. The proceed deallocates the
procedure's frame if it is a standard frame on the top of stack. This deallocation
is performed by resetting the CUITent frame to be that of the immediate ancestor
of the procedure (its caller). Because the execute first invokes another
procedure before it returns, the current frame is reused, not deallocated, as is
explained below.

Last call optimization, also known as tail recursion optimization (TRO) ,
reuses the current frame (if it is at the top of stack) for the last goal of a clause.
The fust use of TRO for Prolog was in DEC-lO Prolog [94] and is considered
essential for the CIF because of Prolog's reliance on recursion instead of
iteration. Procedural CIFs do not implement TRO because the languages do not
rely on recursion. Huck [39] reports that typical FORTRAN programs execute
on average 290 V AX-I 1/780 instructions between procedure calls. In this book
it is found that on average, Prolog executes 15.3 (W AM) instructions between
procedure calls (Section 3.2). TRO is necessary to increase frame referencing
(spatial) locality. Spatial locality is a measure of the locus of memory references
within the storage model. High locality implies that the storage areas do not
grow and shrink rapidly. This type of behavior can be exploited by small
(inexpensive) hardware buffers that capture a large percentage of all memory
references. Such buffers reduce the effective memory access time thereby
improving processor performance. The greater the locality, the greater the buffer
cost-efficiency.

TRO is implemented in the CIF by passing arguments directly over the

www.manaraa.com

PROLOG ARCHITECfURES 31

caller's arguments via Y operands if the caller's frame is at the top of stack.
Abstractly, this amounts to deallocating the frame of the current scope just before
invoking the last goal of that procedure. To avoid leaving references pointing
into the old frame, frame variables thus referenced (i.e., unsafe operands) are
copied onto the heap before deallocation.

Procedural CIFs as defined by Flynn and Hoevel [27], require that objects
and actions at the architecture level correspond to objects and actions at the
language level. This requirement ensures that the CIF uses no more storage
space or interpretation time than described by the source program. The
languages to which this concept was originally applied are much lower-level
languages than Prolog. Attributes of these languages are closely related to host
machine functionality, e.g., the FORTRAN addition operator and its
correspondence to an ALU add function.

This view of translation requires transparency between source and object,
where the only optimizations allowed are at the source level. For a simple
language, such as FORTRAN, this view is logical - transparency can reduce
computation complexity and increase reliability. A complex language such as
Prolog, however, does not have the same strong notion of sequentiality of
instructions as does FORTRAN. During resolution, head arguments can be
matched in any order, and when matching an argument which is a complex term,
subterms can be matched in any order. Thus the traditional view of transparency,
a direct map between source-level and host-level state transitions, is unmotivated
and restrictive for Prolog. It is for this reason that the order of the Prolog CIF
instructions in Figure 2-2 does not always correspond directly to the source
programs.

For the Prolog CIF, a tight instruction encoding is assumed. This includes
variable length instructions on bit boundaries. Local branch targets are encoded
into either one or two bytes, assuming a sophisticated linker capable of
determining minimal offsets. Frame variable specifiers are log2 encoded (these
attributes are further described and measurements are presented in Sections 3.3.2
and 3.4). Figure 2-3 gives an example of CIF encoding for the inner-loop of
append/3, in bits. A W AM byte-encoding, using similar offset sizes, requires
15 bytes, an 88% increase in size.

CIF Data Referencing

In this section the CIF data referencing metrics are discussed. The
interpretation of these metrics is dependent on the underlying host assumed.
Two hosts are illustrated here - a simple host which holds the image store
entirely in memory (the naive model), and a complex host which holds the frame

www.manaraa.com

32 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

operands
opcode reg tag offset total

qet_list YO,var(Y3) ,var(YO) 8 6 6 26
qet list Y2,val(Y3),var(Y2) 8 6 6 26
execute append/3 ~8 __________ ~1~6~~2~4

24 12 12 16 64 bits

Figure 2-3: CIF Instruction Encoding (bits): append/3 Clause 2

stack in fast memory and the remainder of the image store in memory (the
traditional model). Additional CIF metrics, not dependent on host, are discussed
in Section 2.1.4.

Prolog data references fall into the following main categories: dereferencing
terms, unifying terms, (un)binding (i.e., binding and unbinding) variables,
(de)trailing (i.e., trailing and detrailing) bindings, and (preparing for)
backtracking. Except for binding a variable, analogous to assignment, none of
these are common in traditional procedural languages. Dereferencing,
backtracking, and its preparation are discussed in the next section. The
remaining types of references are discussed in this section. These represent the
core Prolog operations of passing arguments and binding results.

Using the translation method described in the last section, references made
while unifying terms correspond closely to the source language specification. In
contrast to a procedural language, however, the Prolog specification is
incomplete, thus minimality of referencing cannot be guaranteed. The nature of
dynamic structure creation prevents determination (at translation time) of a
minimal referencing method. For instance, using structure copying (as in the
W AM and adopted in the CIF), new structures are created by copying pre
existing structures verbatim. Using structure sharing (as in DEC-lO Prolog),
new structures are created by reusing the skeleton of pre-existing structures,
copying only variable data. The efficiency of each scheme is dependent on the
amount and type of structure creation and access in the program, because
although structure sharing saves copying static parts of a structure, it requires
indirection in accessing variable parts of a structure (see Mellish [52] for
discussion).

One method of analyzing the CIF is to simply count a memory reference for
each identifier reference in the current scope. This is called the naive elF.
Manipulation of structures or lists involves extra references, as described below.
This metric specifies precisely the memory traffic implied by the source program
making no assumptions about the underlying host. An example of this

www.manaraa.com

PROLOG ARCHITECruRES

append (
[X ILl] ,

append (
Ll,

L2,
[XI L3]) .-

L2,
L3) •

read write

3 2

3 4

Figure 2-4: Traditional CIF Data Referencing (words): append/3

33

referencing metric for one pass through the inner-loop of determinate execution
of append/3 is shown in Figure 2-4, assuming a query such as

? - append([l,2,3,4], [5,6],X).

Simple operators, e.g., unification of L2, do not require instructions, because
the no-operations are removed by the translator. During determinate execution
the first argument is instantiated and the third argument is uninstantiated. One
l1lemory read is needed to access the first argument from the frame and check if it
is a list. Two memory transfers, each consisting of a read and write, are needed
to load the head and tail from the heap into the frame variables for X and L1.
Two reads are needed to access the third argument from the frame and
dereference it. A write is needed to bind the third argument to a list. A memory
transfer is needed to load X into the head of the list. Two writes are needed to
load the tail of the list and a pointer to the tail into the frame variable for L3.

This example shows that referencing requirements are directly specified by
the program, given knowledge of the argument modes. An argument mode
indicates whether the passed argument is always bound, unbound, or possibly
either. Complete knowledge of the argument structure is needed to calculate
referencing in a procedure clause containing shared variables. Recall that in the
case of append/3 in Figure 2-4, X is a shared variable. The modes assumed for
determinate execution indicate that the variable is being copied from the first
argument to the third argument, therefore complete knowledge of the structure of
X is not needed to determine the number of references. If however, the modes
indicate that the first and third arguments are both bound, knowledge of the
structure of X (i.e., is it a tree, an integer, etc.?) is necessary.

Note that the binding of the third argument in append/3 is not trailed
because append/3 is clearly a determinate program. In general, the amount of
trailing is impossible to determine statically from the source program at

www.manaraa.com

34 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

translation time. One could trail all bindings, but this is rarely necessary. The
problem of determining the minimum amount of necessary trailing is addressed
in the next section.

An alternative memory-referencing metric, more in keeping with procedural
CIFs, counts a memory reference for each initial reference to a unique identifier
in the current scope. This is called the traditional elF. This metric assumes an
underlying host that can capture subsequent references, e.g., a frame stack buffer
of unlimited size. An unlimited heap buffer is not considered because the heap
exhibits significantly less locality than the stack, making such an assumption less
appropriate. An unlimited trail buffer is not considered, although it could be,
because trailing does not significantly contribute to memory referencing. Recall
that a CIF frame holds arguments passed to the procedure and local variables.
Since neither of these objects requires initialization (e.g., from a skeletal contour
[91,2]), the alternative referencing metric results in no memory references for

accessing the stack. Note however that the Prolog storage model also consists of
a heap and trail. References to these areas (about 25% of all data references in
typical programs) must be counted.

The append/3 example is re-analyzed in Figure 2-5. Here the alternative
metric is calculated, resulting in six memory references as compared to 12
references in Figure 2-4. Figure 2-5 simply discounts all references to frame
variables in Figure 2-4. Measurements of both the naive CIF and traditional CIF
data referencing metrics for large Prolog benchmarks are presented in Section
3.4.

append (
[XIL1],

append (

L2,
[XIL3])

Ll,
L2,

L3) .

read write

o 2

1 3

Figure 2·5: Alternative CIF Data Referencing (words): append/3

www.manaraa.com

PROLOG ARCHITECTURES 3S

2.1.3. Register-Based elF

A register-based Prolog CIF is defined in this section. This CIF differs from
the traditional model in that it has a two-level name space, leading to the
separation of frames into environments and choice points. In this section,
justifications for constraining the traditional CIF in this manner are given. In
subsequent sections, the two-level name space, register allocation scheme,
storage model, and instruction set are described.

The traditional Prolog CIF previously defined makes no memory references
when referencing the stack. This measurement assumes a host with a stack
buffer of unlimited size. Measurements presented in Chapter 4 indicate that for
typical Prolog programs on the W AM architecture, which has excellent stack
locality, a 256 word stack buffer reduces memory traffic by about 75%. Almost
all of the remaining traffic is due to heap and trail references not captured in the
buffer. In fact, the traditional Prolog CIF will almost certainly have inferior
locality compared to the W AM, as is discussed in detail in the remainder of this
section. These results indicate that a costly host (i.e., a host with a fast local
memory of substantial size) is necessary to achieve the traditional CIF. For
instance, a real host might use a non-architected cache (i.e., a local memory
below the level of the architecture).

Recall that the Prolog CIF is an architecture that does not limit the execution
of Prolog programs on sufficiently powerful hosts. Consider three types of host.
In the first host a small register set is implemented, but no stack buffer or cache.
In this case, the traditional CIF cannot be achieved and a register-based
architecture will perform better. In the second host, a stack buffer is
implemented, so that the traditional CIF can be achieved. In this case, the
traditional CIF is the best architecture if the buffer is large enough. In the third
host, a general cache is implemented, so that the traditional CIF is achieved, but
at significant cost. At comparatively little extra cost, a small, relatively Jaster
register set can also be implemented. Again, a register-based architecture will be
advantageous.

Note that the first and third hosts have identical architectures because the
cache is not explicitly referenced in the instruction set. Considering architectures
for these hosts, it is beneficial to constrain the traditional CIF. The register
based Prolog CIF is such a model, assuming a host with only a small register set.

Two·level Name Space

A two-level name space is used in the register-based Prolog CIF. The first
level is composed of registers; the second level is composed of environments.

www.manaraa.com

36 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

Informally, an environment holds local variables of a clause, similar to a frame in
the traditional CIF model. A more precise definition is given later in this section.

The register set as defined in this model is a group of words, one per register,
that is addressed with an index. The major premise is that a host can offer faster
access to an object stored in a register than to an object stored in an environment.
In other words, the register-based Prolog CIF restricts the traditional CIF from
assuming a host with a stack buffer of significant size to the more modest
assumption of a single, small register set. When calculating the memory traffic
for the register-based CIF, memory references are counted for all stack
references, but not for register references.

Each unique variable in a clause (scope) is allocated either to the register
space or environment space. These are called temporary and permanent
variables respectively in order to retain the accepted nomenclature as introduced
by Warren [96]. A temporary variable is defined informally as a variable which
occurs in at most one chunk, where the head is considered part of the first chunk
[17]. A chunk is a possibly empty sequence of safe goals followed by an unsafe

goal. A safe goal is a built-in goal that does not modify the registers. An unsafe
goal is a goal which is not safe. A permanent variable is a variable which is not
temporary.

Although it is desirable to place all variables in registers, the definition of a
temporary variable has been restricted. A simple compiler cannot determine
whether a temporary variable will survive through a user-defined goal invocation
(procedure call), i.e., whether a given register will be modified by the callee.
Inexpensive and therefore simple register allocators are assumed here. Thus a
variable whose lifetime extends beyond one chunk is categorized as permanent.

The single register set is shared by all clauses in the program. For each
procedure call, arguments are passed through the registers (also called the
argument registers). For very tight call loops (e.g., append/3) TRO operates
entirely from the register set and no environments need be allocated. There are
also disadvantages to using registers. For instance, a caller may pass some
arguments to a callee through the registers. The callee allocates a subset of the
arguments as permanent variables and must subsequently move them into its
environment. If this register-to-memory transfer is verbatim, i.e., no useful
unification is performed, then it is purely an artifact of the register-based
architecture. This overhead is avoided in the traditional Prolog CIF.

The new storage model, illustrated in Figure 2-6, is similar to that of the
traditional Prolog elF (Figure 2-1). The thick arrows in Figure 2-6 represent
typical indirect data references. The thin arrows represent typical management
pointers. Only the most important connections from one area to another are
shown. These connections and the individual areas are described below. The

www.manaraa.com

PROLOG ARCHITECTURES

HEAP

811ucture

ENV
STACK

CP
STACK

Figure 2-6: Register-based Prolog CIF Storage Model

37

TRAIL

address

major difference between the traditional and register-based storage models is that
the latter splits a frame into an environment and choice point, allowing separate
stacks for these objects. Figure 2-6 illustrates such a model.

Since arguments are passed through registers, there is no need to allocate
arguments in an environment belonging to a determinate procedll!'e. Instead,
choice points and environments can be defined as independent objects. A choice
point holds the arguments passed to a nondeterminate procedure and the state
register values (so that these values can be restored upon failure). In addition,
clauses composed of a single chunk do not have any permanent variables, and
therefore do not require an environment.

In the traditional Prolog CIF, a frame is created for each procedure
invocation. In the register-based CIF, an environment is created for each clause
invocation, when necessary. A choice point is created for each nondeterminate
procedure invocation. Since there may be multiple branch points active at any
one time during program execution, multiple choice points must be managed.
The most efficient manner of managing the choice points is in a LIFO stack.
Informally, failure restores the current (top) choice point.

Choice points can be allocated either on the environment stack (as in the
W AM), or on a separate choice point stack. In either case, a choice point must
freeze all previously allocated environments to allow failure to properly restore
them. If choice points are allocated on the environment stack, cut can be
implemented with relative efficiency, but because environments must not be

www.manaraa.com

38 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

removed by cut, cut is less effective in pruning the stack and thereby improving
locality. Similarly, if choice points are allocated on the heap, cut cannot be
efficiently implemented. If not for cut, failure would be the only operation
managing these areas, and either a choice-point/trail-stack or choice-point/heap
combination would be advantageous.

If a choice point stack is used in addition to the environment stack, managing
the separate stacks requires additional memory references, but greater locality is
attained. These tradeoffs are quantified in the next chapters. In addition, trail
addresses could be allocated on the choice point stack. A separate trail stack is
more efficient, however, because the choice points are manipulated not only for
failure, but also for cut. Unlike failure, cut does not restore the computation at
the selected choice point. Therefore cut must not prune the trail (or heap or
stack). If trailed addresses are stored on the choice point stack, cut cannot be
implemented to reclaim the maximum amount of stack space.

Instruction Encoding

This section describes the register-based Prolog CIF instruction set and
encoding methods. The register-based instruction set is similar to that of the
traditional Prolog CIF. The major difference is the pervasive use of register
operands.

As previously described (for the traditional Prolog CIF) the CIF translates
the unification of simple terms and one-level structures into one instruction. A
clause head is matched with get instructions and the body goals are set up with
put instructions. In the case of the register-based CIF, the get sources and put
destinations are temporary variables (registers), whereas the get destination(s)
and put source(s) can be both temporary and permanent variables.

The get and put instruction semantics are the same as specified in Section
2.1.2, with the exception of put with a var source operand. Recall that put
instructions assign their source operand(s) to their destination operand. A var
source operand must first be initialized to an unbound variable before assignment
to the destination. For temporary variables, the unbound variable is created on
the heap because an unbound variable cannot reside in a register (an unbound
variable resides in either the heap or stack - it cannot exist solely in a register,
which has no associated address). For permanent variables, the unbound variable
is created in the environment.

Some examples of register-based CIF code are given in Figure 2-7. On
careful examination, this CIF is similar to the W AM (described in Section 2.2.2),
with get/put _list/ structure encoded in a variable length instruction.
Comparing this approach with a procedural CIF, the fundamental difference is

www.manaraa.com

PROLOG ARCHlTECfURES

append ([] ,X,X) .
get

% get
get
proceed

XO, const ([])
Xl, var(Xl)
X2,val(Xl)

append([XIL1],L2, [XIL3]) :- append(Ll,L2,L3).
get list XO,var(X3),var(XO)

% get- Xl,var(Xl)
get list X2,val(X3),var(X2)

% put- XO,val(XO)
% put Xl,val(Xl)
% put X2,val(X2)

execute append/3

foo(f(a,b,g(X»,X) :- bingo(f(a,X,Y,g(Y»).
% get Xl,var(Xl)

get stet XO,f/3,eonst(a),eonst(b),var(X2)
get-stet X2,g/1,val(Xl)
put-stet XO,f/4,const(a),val(Xl),var(Xl),var(X2)
put-stet X2,g/1,val(Xl)
execute bingo/l

qsort([XIL],RO,R) :- split(L,X,Ll,L2),
qsort(Ll,RO, [XIR1]) ,qsort(L2,Rl,R).

allocate
get list XO,var(YS),var(XO)
get- Xl,var(Y4)
get X2,var(Y2)

% put XO,val(XO)
put Xl,val(YS)
put X2,var(Y3)
put X3,var(YO)
call split/4
put XO,unsafe(Y3)
put Xl,val(Y4)
put list X2,val(YS),var(Yl)
call qsort/3
put XO,unsafe(YO)
put Xl,val(Yl)
put X2,val(Y2)
deallocate
execute qsort/3

Figure 2-7: Register-based Prolog elF Program Examples

39

www.manaraa.com

40 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

the use of registers and subsequent requirement of register allocation. This is not
significant in the measurements presented in this book, where an unlimited
number of registers are assumed, so that reasonable allocation is possible
(although not perfect, in the sense that inter-procedural allocation is not done).
For the benchmarks measured in subsequent chapters, rarely are more than eight
registers used by this simple type of allocation.

The call and proceed instructions in the register-based elf are similar to
those of the traditional elf. Specific allocate and deallocate
instructions manage environments for each individual clause. TRO is therefore
implemented with an explicit deallocate followed by an execute. Note
that TRO is as efficient as in the traditional elf - instead of overwriting the
current frame, the temporary registers are overwritten.

The register-based elf incurs frequent (de)allocation of environments during
the execution of nondeterminate code because each clause is managed
independently. The traditional elf (de)allocates a frame only once per procedure
invocation. Recall that the traditional elf, however, must allocate frames with
space enough for the maximum number of frame variables among the possibly
matching clauses. Therefore the register-based elf reduces environment size by
incuITing management overheads. In the emulator described in this book, the
cost of allocating and deal locating an environment in the register-based elf is
six memory references, so this overhead is significant.

The qsort/3 code in Figure 2-7 illustrates another overhead of the
register-based elf - the register transfer overhead. The qet Xl, var (Y4)
and qet X2, var (Y2) instructions in qsort/3 are not necessary in the
traditional elf. They are present here because these arguments (RO and R) are
permanent variables and so they must be loaded into the environment. For the
benchmarks studied in this book, 6.1 % of the W AM instructions executed are of
this type, generating 3.6% of the total memory traffic (see Table B-2 in Appendix
B). Because the register-based elf instruction set is more tightly encoded than
the W AM, these register transfer instructions represent greater overhead, by
percentage, in the elf.

The register-based Prolog elf is encoded in a manner similar to the
traditional Prolog elf. The only difference is that temporary register operands
cannot be log2 encoded, resulting in slightly larger code. Figure 2-8 gives an
example of elf encoding for the determinate execution of the second clause of
append/3, in bits. In this example, four bit register specifiers give a total of 76
bits, compared to 64 bits for the traditional elf, a 19% increase in size.
Register-based elf data referencing for append/3 is identical to the traditional
elf count given in Figure 2-5 because in this case, the register-based elf
operates solely from registers without accessing the stack.

www.manaraa.com

PROLOG ARCHITECI'URES 41

operands
opcode reg tag offset total

get_list XO,var(X3),var(XO) 8 12 6 26
get list X2, val (X3) ,var (X2) 8 12 6 26
execute append/3 ~8 __________ ~1~6~~2~4

24 24 12 16 76 bits

Figure 2·8: CIF Instruction Encoding (bits): appendJ3 Clause 2

2.1.4. Other elF Metrics: Stability

In the previous sections, Prolog CIF metrics for transparency, program size,
and memory referencing are introduced. Examples of these metrics are given for
the traditional and register-based CIFs. In this section, another important metric,
stability, is described. Stability measures the (potential) disruption to sequential
interpretation of a program. Stability measures include:

• the number of state transitions within a scope (indexing)

• the number of state transitions between scopes (call/return)

• the number of state transitions between a scope and a trap handler
(failure)

• the number of identifiers requiring a computation to map a name into
a value (dereferencing)

• the number of binding operations potentially requiring unbinding
operations upon failure (trailing)

Call/return instructions, similar to those of conventional architectures, will
not be discussed further. Statistical results gathered in this study indicate that
dereferencing is minimized with the rule introduced in the W AM: dereference
only when necessary. One explanation of this is that Prolog programs produce
very short pointer chains (almost always one or no indirections). Therefore, pre
dereferencing or saving of dereferenced values has little advantage. The
following sections define the stability measures for trailing and indexing in
detail. The discussion centers around the traditional CIF, however, the
comments hold equally well for the register-based CIF.

Trailing

A trail function is sought with which each binding is tested to determine if

www.manaraa.com

42 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

the binding needs trailing. Two criteria must be met. The function must cost less
than the memory write needed to trail the binding and must filter out a large
percentage of the bindings, i.e., must reject trailing for a large percentage of
bindings.

Note that all bindings reside either in the heap or in frame variables in the
stack. Recall that failure deallocates portions of the stack and heap created after
the most recent or current branch point. Thus bindings in these now deallocated
areas did not need to be trailed. The trail function is an address comparison
between the location to be bound and the locations in the stack and heap to be
backtracked to in case of failure. The W AM performs a trail test of this type.

Recall that detrailing is the operation, during failure, of reading entries from
the trail and resetting the corresponding locations to unbound, i.e., unbinding
them. The writes can be filtered with an "inverse trail test," to check whether the
locations are still in the machine state. An object may have been trailed, yet is no
longer in the valid heap or stack, because a cut may have reset these areas. In
fact, the trail function and inverse trail function are identical.

Another implementation of this optimization is to garbage collect the trail,
using the inverse trail test, during a cut. This also increases the locality of the
trail. Trail entries rejected by the test must be either marked invalid, or removed
from the trail. If they are simply marked, detrailing must be prepared to interpret
them. If they are removed, each entry in the trail must be read and rewritten
during garbage collection. Thus the only advantage of garbage collecting the
trail is to minimize its size.

Consider the following optimization. If successful execution can be
guaranteed over some segment of the program ending in a cut, then the trail test
over that segment can use a restricted trail test, i.e., using the branch point frame
to be cut to. A restricted trail test reduces the number of trailed objects. The
problem with implementing this optimization is determining that a given
program segment succeeds. If success cannot be guaranteed then the restricted
trail test does not work.

Another way to view this idea is as follows. It has been observed herein that
in certain programs the trail writes exceed trail reads by a significant ratio (as
high as 3: 1 for the W AM). This indicates that deterrninancy in the program is
not being detected by the architecture, which is doing extra work trailing
bindings that are never undone. An example of this phenomenon is the
procedure integers/3, shown in Figure 2-9, which creates a list of sequential
integers.

The first clause repeatedly succeeds while building the list. Finally, the first
clause fails into the second clause which closes the list. For each recursive call
of the first clause, the callee matches the third argument, a variable in the caller's

www.manaraa.com

PROLOG ARCHITECTURES 43

integers(N, Max, [NIRest])
N < Max,
! ,
Nl is N+l,
integers (Nl, Max, Rest).

integers (_, _, []) .

Figure 2·9: Prolog Program Example: Max-N+l Trails

integers(N, Max, L)
N < Max, , . ,
L = [N I Rest] ,
Nl is N+l,
integers (Nl, Max, Rest).

integers (_, _, []).

Figure 2·10: Prolog Program Example: No Trails

integers(N, Max, L) .
N < Max,
L = [NIRest] , , . ,
Nl is N+l,
integers (Nl, Max, Rest).

integers(_, _, []).

Figure 2·11: Prolog Program Example: Moving Comparison Into "Head"

frame, against a list. This structure creation requires trailing the argument in case
the first clause fails. In practice however, the first clause succeeds Max-N times
and fails only once. Therefore the ratio of trail writes to reads is Max-N+ 1: 1.

An alternative encoding of this procedure is shown in Figure 2-10. By
moving the binding of the third argument after the cut, no trailing is done
because the cut resets the current branch point frame to before the caller's frame.
This modification presupposes that binding the third argument can be placed
after the cut, i.e., that the passed parameter is unbound. If the procedure is to be
used to check the sequentiality of a list of integers, then this modification is
erroneous because the base case (second clause) would not be reached. The
modification could be done by a compiler given the mode declaration

www.manaraa.com

44 MEMORY PERFORMANCE OF PROLOG ARcHrrEcrURES

integers(+,+,-)~
Notice that the optimization given in Figure 2-10 is different than moving

the arithmetic comparison as shown in Figure 2-11. This can be done
independently of modes and simply moves the comparison, which binds no
variables, before matching the third argument. A compiler should be readily able
to do this also. In the Prolog ClF, these compiler optimizations are not assumed.
Both trailing and detrailing functions are included however, and measurements of
their efficiency are presented in the next chapter.

Indexing

In Prolog, invocation of a procedure causes the selection of a clause of that
procedure to execute. Alternative clauses satisfying a nondeterminate procedure
must be attempted in their textual order. A trivial selection strategy is to
sequentially attempt to match each and every clause of the procedure. Indexing
methods are selection strategies which improve upon the trivial strategy. In this
section, motivations for designing efficient indexing methods are given.
Indexing in the W AM and the Prolog ClF are then described. Measurements of
indexing efficiency are presented in Section 3.4.

Failures occur within get instructions and built-in predicates. Consider an
instruction failing in the currently executing procedure. There are two types of
failure: either an alternative clause exists and is entered as a result of the failure,
or the failure immediately causes the entire procedure to fail because no
alternative clauses exist. Occurrences of the latter type of failure cannot be
minimized in the ClF because they are representative of nondeterministic
program execution (recall that the translation from Prolog source to ClF is quite
simple and cannot analyze these occurrences statically). The former type of
failure, called head failure or shallow backtracking, is indicative of a non
optimal clause selection strategy. This type of failure can be minimized with
better indexing.

Indexing, as introduced for the W AM, hashes the first passed argument into
a table of possible clauses [96]. The resulting selection may be a single clause if
there are no collisions, or a group of clauses. This method significantly improves
upon the trivial selection strategy, if programs properly utilize the first argument.
Ideal indexing is a selection method introduced for the Prolog ClF. Ideal
indexing chooses the correct clause, expending no extra work (i.e., instructions

6Mode annotation was first introduced in DEC-IO Prolog [12]. u+u specifies that the
corresponding argument is bound. "-" specifies that the corresponding argument is unbound.

www.manaraa.com

PROLOG ARCHITECTURES 45

executed and memory references made), unless one the following conditions
exists:

1. The head of a clause matches, but the body fails - this requires
work to match the head.

2. Shared variables in the head of a clause fail to unify - this requires
work to partially match the head.

For two or more of these occurrences, work is also required to initially load the
state values into the branch point frame, and restore these values for each failure.

Ideal indexing is a CIF attribute introduced to maximize the stability of state
transfers. Indexing reduces clause-to-clause transfers and failures. It also
reduces overall memory referencing because work matching clause heads, and
the loading and restoring of branch point frames, is avoided. The previous
definition specifies that an ideal index expends no extra work when selecting a
clause. In other words, the work required to match a head successfully is meant
to approximate the work required to select the clause, the assumption being that
the head variables are bound during the indexing.

Ideal indexing is simulated (using the tools described in Section 3.1) because
it cannot be analyzed statically. The simulator discounts work expended in
matching clause heads which fail because of mismatched ground variables. For
example, trying to unify f (a, b, c) with f (X, b, z) fails, and is discounted.
Trying to unify f (a, b, c) with f (X, b, X), however, fails but is counted
because indexing cannot test shared variables. Consider the following procedure,
forthequery"?- p(3,b)."

p(l,a) .
p(X,b) :- X = 2.
p(X,b) :- X = 3.

Ideal indexing discounts any work attempted to match the first clause. The work
required to execute the second and third clauses is counted. Loading state values
into the branch point frame in the second clause and the failure sequence
restoring those state values for the third clause are counted. For the query
p (2, b), however, loading the branch point frame in the second clause should
be counted for ideal indexing because although the last clause is not executed,
this cannot be determined a priori. The simulated model is not sophisticated
enough to catch this subtlety and as a result, does not account for this overhead.

www.manaraa.com

46 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

2.1.5. Summary

In this section, Prolog canonical interpretive forms (CIFs) are defined from
the semantics of Prolog with some ideas bOITowed from existing Prolog
architectures. The CIFs define the measures that limit the execution performance
of Prolog (measurements of the characteristics of the Prolog CIFs are presented
in Section 3.4). Initially naive and traditional Prolog CIFs are described - they
are based on the procedural CIFs given by Flynn and Hoevel [27]. The naive
model assumes a simple host with no fast memory. The traditional model
assumes a host implementing a stack buffer of unlimited size. It is argued that
such an assumption is ill-directed for Prolog, where only 75% of the data
references are to the stack. To achieve canonical performance somewhat costly
hosts must be assumed. A real host might use a non-architected cache, for
instance, to attempt to achieve the traditional CIF's performance. Other hosts
may choose not to incur the expense, and therefore cannot achieve even a
fraction of the traditional CIF's performance. In anticipation of this, it is
beneficial to constrain the CIF so that the CIF does not rely on the assumption of
a stack buffer of significant size. A register-based Prolog CIF is defined which
assumes a host with only a single, small register set. Inexpensive hosts (with
only registers) achieve greater performance with this constrained CIF than with
the traditional CIF. Expensive hosts (with caches) have the opportunity, by
implementing fast registers at a possibly small cost increase, to also achieve
greater performance with the constrained CIF.

The register-based CIF naturally leads to direct correspondence architectures
(DCAs) for Prolog, i.e., architectures that can be implemented on realistic hosts.
The W AM architecture, defined in Section 2.2.2, can be viewed as such a DCA.
DCAs based on the traditional Prolog CIF, such as the DEC-lO Prolog model
described in the next section, may offer better performance than the W AM on a
host with a large stack buffer or register window set. Even on these powerful
hosts, however, the performance differential between the traditional and register
based DCAs is not anticipated to be large. On conventional hosts, the register
based DC As are superior to the traditional DCAs. For this reason, the W AM
architecture is chosen throughout the remainder of this book as the compiler
target for the Prolog benchmarks studied.

www.manaraa.com

PROLOG ARCHITECTURES 47

2.2. Environment Stacking Architectures

The Prolog architecture family presented in Section 2.1 is an environment
stacking model. The first environment stacking architecture was introduced in
DEC-lO Prolog [93].7 Historically, the W AM was derived from DEC-IO Prolog.
It should be noted that the environment stacking model is not the only successful
model used to implement Prolog. The original version of Symbolics-3600
Prolog uses a goal stacking model [97]. This architecture was chosen for the
Symbolics implementation because it maps well onto the Lisp computational
model and the 3600 organization [80]. The goal stacking model was not chosen
as the basis of the Prolog CIF, nor will it be discussed in detail this book, because
the environment stacking model has superior memory referencing characteristics.

In the goal stacking model, upon successful unification of a clause head,
stack frames are created for each goal of the body. The stack therefore exactly
mimics the resolvent of a proof as calculated with paper and pencil. This
decreases the stability and compactness of the stack, reducing locality, as
compared to the environment stacking model. In addition, because resolution
replaces the top goal of the stack by the body of a matching clause, variables
resident only in that goal must be transferred to the heap to prevent them from
being overwritten. The check necessary to determine if a variable needs to be
transferred must be performed at runtime. Although the environment stacking
model also requires this safety operation, its frequency can be reduced by static
analysis.

In the remainder of this section, both the DEC-lO Prolog and the W AM
implementations of the environment stacking model are described and compared.
This constitutes a more conventional explanation of the W AM than that of the
previous section.

2.2.1. DEC-IO Prolog Abstract Machine

The DEC-lO Prolog architecture developed by D.H.D. Warren, as described
in [94], is called the Prolog-lO model in this book. The stack (called the local
stack) corresponds roughly to a conventional language's procedure invocation
stack. A Prolog-lO frame is a variable-length stack frame holding the
procedure's local variables, the arguments passed to the procedure, bookkeeping

7The phrase "environment stacking" was not coined until the WAM [96]. but it is used
informally here.

www.manaraa.com

48 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

information, and, if the procedure is nondeterminate, information needed to retry
the procedure at its next clause. Thus the frame is similar to the traditional
Prolog CIF frame introduced earlier.

The Prolog-lO model is built around several state registers. The registers
related to the local stack and necessary for the purposes of this discussion are L,
the current local stack frame, and BL, the current backtrack frame. The top of the
stack is defined as the greater of BL and L. The current frame pointed to by L

heads a continuation chain of frames corresponding to the resolvent of the proof.
An additional backtrack chain of possibly interspersed frames is headed by BL.

These frames belong to nondeterminate procedures and are called backtrack
frames.

The Prolog-lO calling convention is as follows. The caller loads arguments
into dedicated argument registers and control is passed to the callee. The callee
loads these registers into its empty frame. Indexing instructions select a callee
clause to try. A nondeterminate callee also loads backtracking information from
the state registers into its frame. Specialized unification instructions in the head
of the selected clause attempt unification against the arguments. If the match
succeeds, an enter instruction is executed which saves certain bookkeeping
information in the frame, completing the frame. The goals are then called
sequentially.

Failure occurs when a goal cannot be satisfied; i.e., when the caller's
arguments fail to unify with a callee's head. Failure restores the current
backtrack frame by assigning L=BL. Note that if the current backtrack frame is
already on the top of the stack, the state registers have not changed - this is
called shallow backtracking. If this is not the case then the bookkeeping
information in the new current frame must be restored (deep backtracking). In
either case, any bindings made by the unsuccessful goal are undone and
execution proceeds with an alternative clause. The Prolog-IO model handles
shallow backtracking efficiently. The price for efficient backtracking is the
calling convention having the callee always load the argument registers into its
newly formed frame and the overhead of always referencing variables from the
frame to avoid refreshing the argument registers upon backtracking.

Cut is implemented in the Prolog-IO model by traveling down the backtrack
chain until a frame is found predating the current frame. BL is assigned to point
to this backtrack frame, trimming the stack.

ZIP and NIP, developed by Byrd [9] and Bowen [10] respectively, are
environment-stacking models that form an architectural midpoint between
Prolog-lO and the W AM. NIP, an improved version of ZIP, has a storage model
with frames similar to those of Prolog-lO. The NIP abstract machine is an
improved (cleaned-up) version of the Prolog-lO abstract machine, similar in

www.manaraa.com

PROLOG ARCHlTECrURES 49

E current environment
B CUlTent choice point
H heap pointer
HB heap backtrack pointer
TR trail pointer
P current instruction pointer
CP continuation instruction pointer
S heap structure pointer
xO • • • X15 argument registers

Table 2·1: W AM Model State Registers

many respects to the W AM. The NIP compiler moves certain primitive goals
(e.g., var/l, cut/O, etc.) appearing immediately after the neck of a clause to
before the neck. This further optimizes shallow backtracking by allowing failure
to occur earlier, before work is expended completing the frame. Note that NIP
differs most significantly with the W AM in that it does not have indexing.

2.2.2. Warren Abstract Machine

The W AM is a more recent environment-stacking model developed by
D.H.D. Warren [96], based on the Prolog-l0 and NIP models and first
implemented for the V AX. The W AM model defines a stack with two types of
variable-length frames: environments and choice points. An environment holds
only local variables and bookkeeping information. A choice point holds
arguments passed to a nondeterminate procedure and backtracking information.
A continuation chain links environments and a backtrack chain links choice
points. This separation permits compiler optimization of choice point allocation
only where necessary.

The W AM model has state and argument registers, summarized in Table 2-1,
which are similar in function to those of the Proiog-IO model. The stack is also
managed similarly - the top of stack is the more recent of E and B. The
backtracking information in a choice point includes a pointer to the environment
active when the choice point was created.

The W AM model calling conventions are as follows. The caller loads
arguments into dedicated argument registers and control is passed to the callee.
Indexing instructions select a callee clause to try. If the callee is nondeterminate,
i.e., if indexing cannot narrow down the field of possibly matching clauses to
one, a choice point is created and loaded with the argument registers and

www.manaraa.com

50 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

backtracking information (E, B, H, CP, P, TR). Specialized unification
instructions in the head of the selected clause attempt unification against the
arguments. If the match succeeds, the goals of the clause are called sequentially.

Failure restores the machine state from the current choice point, which is left
in place (a subsequent instruction will remove the choice point if no alternatives
remain). TR, CP, P, E, and the argument registers are reloaded with values from
the choice point. H is reloaded from HB, a state register which mirrors the H

value saved in the choice point. Shallow backtracking occurs when the current
choice point is the most recent frame on the stack. Otherwise deep backtracking
occurs and resetting B trims the stack.

In the case of shallow backtracking, restoration of E and CP is unnecessary·
because head unification cannot modify these registers. As mentioned, the
Proiog-IO model avoids saving and restoring these registers with the enter
instruction. It is also possible that the argument registers have not been modified
before head failure. This cannot be guaranteed by compilers that overwrite
registers during head unification. If this optimization is removed, saving and
restoring argument registers is unnecessary until after the clause body is entered.
With these two modifications, the W AM model approaches the Prolog-lO
model's shallow backtracking efficiency.

One method by which cut can be implemented in the W AM model is by
assigning B to the choice point immediately preceding the current environment.
If the current environment is nondeterrninate, B is reassigned to point to the
choice point before this choice point. The action of resetting B may trim the
stack. This implementation of cut is adopted here.

2.2.3. Comparison Between Prolog-10 and WAM

To compare the WAM and Prolog-lO, consider the program in Figure 2-12.
As described in the previous section, the W AM model [96], and the Proiog-IO
model [94], do not correspond precisely to either the W AM variant measured in
this book (introduced in the next section), nor to actual DEC-tO Prolog. For the
purposes of comparison, however, the models described here are sufficient to
approximate the performance of the actual architectures.

Table 2-2 shows the correspondence between the Proiog-IO frame and the
W AM choice point and environment. For instance, P (B) represents the
instruction pointer, P, saved in the current W AM choice point, pointed to by B.

Thus P (B) indicates which instruction to execute next on backtracking. BP (L)

corresponds to the same Proiog-IO information. Note that because the W AM
splits the Prolog-lO frame into a choice point and environment, sometimes

www.manaraa.com

PROLOG ARCHITECTURES

a(a,X) :- b(X).
a(b,X) .- b(X),c(X),d(X).
a(c,l).

z (a,X) :- b(X).
z(b,X) :- b(X) ,c(X) ,d(X).
z(c,l) .
z(_,_) .

b (1) .
c (1) .
d (1) •

Figure 2·12: Program Example: W AMlProlog-1O Comparison

51

redundant information is saved, as E (B) ;: E (E) and CP (B) ;: CP (E). This
happens whenever a choice point followed by an environment is created for the
same clause.

To determine the differences in execution between the W AM and Prolog-lO
models, various queries of the program in Figure 2-12 are considered. The
queries are described in Table 2-3. The machine code and traces used to
calculate these statistics are listed in Tick [85]. Table 2-3 lists the query, the
success or failure of the query, the number of memory references made by each
model, and the difference between memory reference counts. Also listed are
whether the W AM model builds a choice point and an environment. The
Prolog-IO model builds a frame for all queries and saves backtracking
information only for the z/2 queries, i.e., the nondeterminate traces.

A hypothesis is that the W AM will do better (i.e., make fewer memory
references) for determinate traces, Prolog-10 will do better for shallow
nondeterminate traces and both will be equal for deep non determinate traces.
Table 2-3 supports this hypothesis. Determinate execution of a/2 favors W AM
by four to eight memory references. Deep backtracking (z (a, 2) and z (b I 2))
marginally favors Prolog-1O by one to three memory references. Shallow
backtracking, z (c, 2) , favors Prolog -10 by six memory references.

One place where the shallow backtracking savings occur is the Prolog-l 0
enter instruction which separates the head and body of a clause. The enter
instruction saves G, CL and CP (equivalently, H, E and CP for the W AM), which
are later restored in the optimized last call by the depart instruction. If the
head is not completed, i.e., it fails, the enter is never executed. The fail
operation does not restore G, CL or CP because they are not modified in the head.

www.manaraa.com

52

WAM
B(B)
H(B)
E(B)
CP (B)
TR(B)
P (B)
Al. .Am(B)

E(E)
CP(E)
Yl •. Yn(E)

Prolog-lO
BL(L)
G(L)
CL(L)
CP (L)
TR(L)
BP (L)
Al. .Am(L)

CL(L)
CP (L)
Yl. . Yn (L)

MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

contents
pointer to previous choice point
pointer to heap frame for choice point
pointer to environment
continuation pointer
pointer to trail
pointer to instruction to try next
arguments

pointer to previous environment
continuation pointer
variables

Table 2-2: W AM and Prolog-tO Stack Correspondence

memory references
guery cU env status Prolog-lO WAM diff
a(a,l) no no succeeds 5 0 +5
a(b,l) no yes succeeds 14 6 +8
a(c,2) no no fails in head 4 0 +4
a(a,2) no no fails in first goal 5 0 +5
a(b,2) no yes fails in first goal 8 4 +4
z(a,l) yes no succeeds 11 8 +3
z (b, 1) yes yes succeeds 11 16 -5
z(c,2) yes no fails in head 11 17 -6
z(a,2) yes no fails in first goal 16 17 -1
z (b, 2) yes yes fails in first goal 18 21 -3

Table 2-3: W AM and Prolog-tO Memory Referencing

Familiarity with the W AM will no doubt cause confusion as to why G, the heap
pointer, cannot be modified in the head. This is because Prolog-tO uses structure
sharing to represent terms in the heap. Since the W AM uses structure copying, H

may be modified in the head, but E and CP are not.
If the W AM is modified to save E and CP in an instruction similar to

enter, this would save four memory references (two writes and two reads)
during shallow backtracking. Assuming that fetching the new enter instruction
itself requires a one byte memory reference, the savings is reduced to 3.75
references. This savings can be attained only if shallow failure is distinguished
from deep failure, to avoid restoring E and CP from the choice point in the
former case. The conclusion here is that the W AM can be modified to

www.manaraa.com

PROLOG ARCHrrEcnnu;:s

advantage
Prolog· to
saves args once
per procedure

WAM
references args from
registers

disadvantage references args restores args once
from environment per clause

Table 2·4: Prolog-lO - WAM Tradeoffs

53

incorporate Prolog-lO optimizations, although the savings may not outweigh the
implementation overheads.

Another area where savings might occur is the method of saving arguments.
In the Prolog-lO model, arguments are saved in an arrive instruction and then
referenced from the environment by subsequent body instructions. The W AM
model also saves the arguments (in a choice point by the trY_Me_else
instruction) but references them from the register set (possibly modifying them).
Thus failing clauses require the register set to be refreshed from the choice point.
The trade-off here is summarized in Table 2-4.

A possible hardware solution to this problem is to flag modified argument
registers in the W AM. If none are dirty, restoration may be skipped on failure.
Although shallow backtracking may still entail modification of argument
registers (while setting them up for a body which is never entered), most unit
clauses can be compiled to avoid modification. Turk has also suggested this
solution [87].

Register window sets are another idea to solve the register modification
problem. In the simple case of shallow backtracking, the register window
scheme is as follows. A clause matches its head from one window and places
arguments to its first goal in an alternative window. Recovery from head failure
is automatic. For more complex execution scenarios, however, register windows
are more appropriate for the Prolog-lO architecture than for the W AM. A
Prolog-IO frame maps well onto a window, whereas the W AM requires splitting
windows between environment and/or choice point objects. Borriello et. al.
[8] suggest using the SPUR processor's register windows for choice points

only. Measurements presented in Chapter 3 suggest, however, that shallow
backtracking is the predominant form of nondeterminate execution in Prolog
programs. This implies that a single choice-point buffer, like that of the PLM or
Pegasus, is sufficient to capture most choice point traffic. Therefore allocating
an entire set of register windows for the choice point stack is not cost-effective.

On the SPUR, environments cannot be allocated in register windows because

www.manaraa.com

S4 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

registers are not mapped onto memory addresses. Therefore an unbound variable
(which points to itself) cannot reside solely in a register. Stack memory
addresses can be aliased onto the register windows at the cost of additional
hardware [42]. Simple aliasing hardware has the disadvantage of requiring that
contiguous windows correspond to contiguous memory addresses. This implies
that the advantage of overlapping windows can be gained only if the caller's
environment is at the top of stack.

2.2.4. Lcode Architecture

The instruction set used in this study, called Lcode, derives from both the
W AM model and the Berkeley PLM architecture [24]. About 90% of these
instruction sets are identical. Differences between the models are detailed in the
remainder of this section.

Lcode Instruction Set

Lcode is introduced by means of the flattenCode/3 example presented
earlier in Section 1.1. The flattenCode/3 Lcode, annotated with the Prolog
source program, is shown in Figure 2-13. Recallthat flattenCode/3 flattens
a structure into a list. Choice points created for the first two clauses of
flattenCode/3 are immediately cut by their first goals. Choice points are
created to allow the third clause, the "catchall," to be attempted should the others
fail. The compiler could avoid creating these choice points by optimizing across
clause boundaries within a procedure. However, this code is being used as a
simple example of a more pervasive problem which cannot always be recognized
and removed by the compiler.

When flattening a deeply nested structure, flattenCode/3 recurses
around the second clause. The switch term selects label 70 because the first
argument, XO, is a structure. The try_me_else instruction at 70 creates a
choice point and attempts the second clause. The choice point is created in
anticipation of failing through to the following clause, beginning with a
trust me else instruction. The second clause at label 75 first matches the
head and then executes a cut. The cut removes the last choice point created
(by the try_me _else at label 70). Subsequent recursive goals follow. The
final goal uses TRO by deallocating the second clause's environment before the
recursive call (the execute instruction).

Failing to match the head is an example of shallow backtracking. Figure

www.manaraa.com

PROLOG ARCHITECTURES

flattenCode/3:

71:
73:

72:

70:
75:

74:
69:

switch term 71,69,70
try 3-;73
retry 75
trust 69

try_me_else 3,72
get_constant XO,void/O
get_value X1,X2
cut _strong
proceed

trust 69

try_me_else 74
get_structure XO, , , /2'
unify_variable XO
allocate 3
unify variable Y2
get_variable YO, X2

cut

put_variable Y1,X2
call flattenCode/3
put_value Y2,XO
put_unsafe_value Y1,X1
put_value YO,X2
deallocate
execute flattenCode/3

trust me else fail
get_1I'st- Xl
unify_local_value XO
unify_local_value X2
proceed

% flattenCode(
% void,
% Code, Code) .-
% ! .

% flattenCode(
% , (
% Seq1,

% Seq2) ,
% Code,
% CodeO)
% ! ,
% flattenCode (Seq1, CodeO,
% Code1
%) ,
% flattenCode(Seq2,
% Code1,
% Code

%) .

% flattenCode(Instr,
% [
% Instrl
% Codel,Code) .

Figure 2·13: Lcode Program Example: flattenCode/3

ss

www.manaraa.com

56 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

70:
75:

try_me_else 74
get structure XO,' ,/2'
trust me else fail

% fails ...

Figure 2-14: Instruction Trace of Head Failure: flattenCode/3

70: try_me_else 74
75: get_structure XO,' ,/2'

get_variable YO,X2
cut

Figure 2-15: Instruction Trace of Head Success: flattenCode/3

2-14 shows the instruction sequence compnsmg choice point creation and
removal for head failure. Figure 2-15 shows a similar sequence for head success.
The importance of these two traces is that they both create and remove a choice
point. The failure sequence restores the state held in the choice point giving it a
larger penalty than the successful sequence. Both, however, contribute equally to
choice point write bandwidth - an overhead contributing only indirectly to
program execution.

Table 2-5 summarizes the Lcode instruction set. There are in addition
several arithmetic instructions, not shown in the table. The operands are denoted
as C - atom, integer or functor (constant), Xi - temporary variable (register
specifier), Yi - permanent variable (offset in current environment), vi -
argument register or permanent variable, L - instruction address, and n - integer.
The head and goal matching instructions are previously introduced as the get and
put instructions in the Prolog CIF. The tag of a single get destination operand
(or a single put source operand) is incorporated into the W AM opcode. In
addition, all instructions are fixed length. get/put_list/ structure
instruction operands are allocated individual unify instructions. The
arithmetic, cut, branch, comparison, and escape Lcode instructions are not
present in the W AM. Refer to Tick [84] for the complete Lcode semantics.
Refer to Warren [96], Gabriel [30], or Fagin [24] for the W AM instruction
semantics.

www.manaraa.com

PROLOG ARCHrrECfURES

goal matching
put_varlab1e Vl,Xl
put_constant Xl,C
put_nl1 Xl

head matching
get varlab1e Vl,Xl
get:constant Xl,C
get_nll Xl
get_llst Xi
get structure Xl,C
get:value Vl,Xi

structure matching
unlfy varlab1e Vl
unlfy-constant C
unlfy:nll

57

put llst Xi
put-structure Xl,C
put-value Vl, Xi
put:unsafe_va1ue Yl,Xl

unify value Vi
unlfy-1ocal value Vl
unlfy:vold n

clause control
a110cate n
dea110cate
ca11 L
execute L
proceed
escape n

indexing procedure control
branch n,Xl,L try n,L
camp n,Vl,Vj retry L
cond n,Vl trust L
hash C,L try me e1se n,L
jump L retry_me_dse L
swltch te~ Lc,L1,Ls trust me e1se fal1
swltch-constant n cut - - -
swltch-structure n cut strong

- cutd L
fall

Table 2·S: Lcode Instruction Set

Lcode Storage Management

Throughout the Lcode system, design decisions were made with speed and
simplicity as the most important considerations. The emulator is only used to
analyze program execution and therefore user interface, error recovery, and ease
of program development were minor or nonexistent considerations. Note that the
specifics of Lcode data types, tags, storage areas and storage management, as
defined below, do not accurately resemble a realistic Prolog implementation.
Many details, necessary for such an implementation (e.g., garbage collection),
are purposely missing to facilitate analysis of the features which are included.
The Lcode system is used to emulate a number of alternative architecture
attributes and therefore is representative of a range of Prolog architectures, e.g.,
the PLM and the W AM.

The Lcode emulator manages six memory areas: code space, symbol table,
heap, trail, stack and push down list (pdl). The code space contains the Lcode
program object image. Assert and retract are not implemented, so this area is
fixed. The symbol table holds the print·names of atoms, functors, procedures
and top-level variables (i.e., variables in the query). The heap holds structures

www.manaraa.com

58

integer
nil
atom
functor
ref
unbound
list
structure

MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

1<-- 4 bytes --> I
I 2s-complement value 0111
1000000001000000001000000001000001111
1000000001 identifier I 1111
I arity I identifier 1-----1111
I long address ----- 001
I self address 001
I long address 011
I long address 10 I

Table 2-6: Lcode Data Object Formats

and unsafe values and is dynamically managed as a stack. The stack holds
environments and choice points. The pdl is used by general unification and
~=/2, both of which are implemented as recursive functions. The emulator does
not check for memory area overflows. No facilities for data area shifting,
trimming or garbage collection are implemented. In addition, cut does not
garbage-collect the trail. Maximum data area sizes may be specified as emulator
input, and stay fixed during execution.

A data object is a word (32 bits) composed of a variable length tag and a
value. Lcode data objects are defined in Table 2-6. An identifier is an offset into
the emulator's symbol table. Unification of atoms, for instance, is done by
comparing identifiers. An Lcode linker has not been implemented, so that entire
Lcode programs must be assembled together to allow proper identifier
assignment. A long address is a full 30 bit address pointing to another data
object. An unbound variable points to itself (a self address) to differentiate it
from an indirect reference.

Note that the Lcode architecture (like the W AM) is structure copying, i.e.,
unifying an unbound variable with a structure involves copying the entire
structure in the heap. In addition, the Lcode emulator uses standard list coding,
requiring two heap words per list cell.

Lcode instructions are either one, two or three words long. Minimal
encoding is de-emphasized to allow fast emulation. The first halfword of each
instruction is an opcode. An opcode is the address of the C code emulating that
instruction. This allows fast instruction dispatch but requires that the emulator
kernel fit in the first 64 Kbytes of virtual memory.

Arbitrarily large programs can be compiled and executed. This is
implemented with both absolute and instruction relative addressing. To avoid a
linkage phase, absolute addressing is actually implemented as base relative,

www.manaraa.com

PROLOG ARCHITECTURES 59

where the base is the first location of the program. Base relative addresses are a
full 32 bits long and are used only by inter-procedural branches, i.e., call and
execute. Instruction relative addresses are 16 bits and are used by all other
branches, i.e., all intra-procedural branches. This distinction required the
introduction of the jump instruction to implement disjunction, rather than with
the execute instruction, as is done in the PLM compiler. Note that intra
procedural branch offsets for the PLM are only eight bits.

Lcode choice points are composed of a fixed size bookkeeping area (seven
words) and a variable size argument area (c.f., the PLM choice points which are
fixed size of 15 words). Lcode environments are composed of a fixed size
bookkeeping area (four words - c.f., the W AM with two words) and a variable
size permanent variable area. Both choice points and environments remain
statically fixed in size once they are created (c.f., the W AM, which trims
environments) .

Lcode Instruction Encoding

As is previously mentioned, the Lcode instruction set is loosely encoded to
make emulation efficient. It is of interest, however, to measure the instruction
bandwidth of more tightly encoded versions of the instruction set. The Lcode
emulator calculates the bandwidth of several encodings. All instruction
bandwidth measurements presented in this book are calculated independently of
the actual Lcode encoding by first tallying instruction counts, and then scaling
the counts by appropriate instruction sizes.

In this section two simple encodings are briefly described: word and byte
boundary encodings. In Section 3.3.2, bit boundary encodings are introduced
and instruction bandwidth measurements are presented for all the encodings.
Word (byte) boundary encodings force each instruction to occupy an integral
number of words (bytes). The Lcode instruction operand types are listed below.
The operand sizes given are valid for word and byte boundary encodings only.

1. immediate constant - four bytes encode all Prolog data objects:
integers, atoms and functors. In addition, several instructions use
small (one byte) immediate constants, e.g., the allocate operand
specifying the number of permanent variables in the environment.

2. temporary register specifier - four bits encodes 16 registers
(c.f., PLM with eight registers). Extra procedure arguments can be
collected by the compiler into the last argument. If more
temporaries are needed during an arithmetic calculation, for
instance, they can be allocated as permanent registers.

3. permanent register specifier - eight bits encode 256 registers.
This should be sufficient for most applications (note that Quintus
Prolog [62] and PLM also have this restriction).

www.manaraa.com

60 MEMORYPERFORMANCEOFPROLOGARCH~URES

4. local (inter-procedure) branch target - both one and two byte
offsets (from the program counter) are measured. PLM, for
instance, uses one byte offsets. Warren suggests using two byte
offsets [96].

5. global (procedure call) branch target - a two byte offset from a
segment register is assumed.

The Lcode formats are summarized in Table B-l in Appendix B.

Split-Stack Architecture

The split-stack model is a modification of the W AM model wherein
environments and choice points are stored separately in an environment stack (E
stack) and choice point stack (B-stack). The Lcode emulator can optionally
execute Prolog programs with the split-stack model. The main advantage of this
model is an increase in the spatial locality of environment and choice point
references.

In Chapter 3, it is shown that after choice point references, environment
references are the next largest contributor to the Prolog data bandwidth
requirement. In Chapter 4, an E-stack buffer is investigated to reduce this
bandwidth requirement, preferably a buffer which can hold the multiple
environments at the top of the continuation chain. The buffer must hold only
environments to avoid aliasing the choice point buffer. The split-stack model
facilitates a directly addressable, wrap-around E-stack buffer much likl! the stack
buffer previously described. As will be shown, an E-stack buffer of one half the
size of a corresponding W AM model stack buffer will give similar reductions of
environment traffic and effective memory access time.

The split-stack model must retain information implicit in the single stack
model, i.e., the position of the choice points with respect to environments. The
key is to expand the B register into a register pair {B,C} [13]. B serves the
function of the old B, linking the choice point chain together within the B-stack.
C points into the E-stack to where the choice point "would have been" (in the
single-stack model). More precisely, C is the address of the top of E-stack when
the choice point was created. The top of E-stack is defined as the topmost valid
entry (in the topmost valid environment) in the E-stack.

The B pointer and choice point size entries in a choice point are now
redundant because the B-stack is a true stack. Thus the size location can be
reused to hold C. Note that the E pointer and environment size in an environment
are not redundant because the E-stack is not a true stack, i.e., the current
environment may not be at the top of stack.

The current instruction semantics work for the split-stack model with minor

www.manaraa.com

PROLOG ARCHITECTURES 61

modifications for {B,C}. B represents not only the current choice point but also
the top of the B-stack. Thus cuts naturally deallocate choice points from the B
stack and no "deep" choice points occur. E still points to the current
environment, not the top of E-stack. The top of E-stack is defined as

if (C > E) TOS = Ci else TOS = Ei
When creating a new choice point, the state is pushed onto the B-stack and then
C and B are updated:

if (E ~ C) C = Ei
B = B + sizeof(choice point)i

A consequence of a true choice point stack is that cutting a choice point is
permanent (this is not so with the single stack model, where an environment can
"protect" a deep choice point). Thus, cuts in a nondeterminate clause cannot be
permitted to cut out the clause's choice point if subsequent cuts in the clause are
to work. There are two solutions to this problem: a lazy cut, described in Tick
[82], or a compiler source-to-source transformation converting predicates with

multiple cuts into a sequence of single cut predicates. For example,

becomes
p. bl,! ,b2, ! ,b3 .

p. bl,! ,p' .
p' : - b2, ! ,b3 .

Recall that the W AM trail test is
trail (A,HB,B) . A < HB

The split-stack trail test is similar:
trail (A,HB,B) .- A < HB

A < B.

A~C.

2.3. Restricted AND-Parallel Prolog Architecture

Exploitation of parallelism in logic programming languages is of great
interest because sequential performance is limited. The two main approaches to
exploiting parallelism in logic programming are committed-choice
nondeterministic and don't-know nondeterministic languages. Committed-choice
nondeterministic languages sacrifice backtracking to reduce the complexity of
the abstract execution model and efficiently exploit parallelism. The three most
prominent members of this language family are Concurrent Prolog [72], Parlog
[16], and Guarded Horn Clauses [88]. Don't-know nondeterministic languages,

e.g., Prolog, retain full backtracking capabilities. Many implementations use an
extended version of Prolog, exploiting both AND and OR parallelism. Examples

www.manaraa.com

62 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

are ANLW AM - an OR-Parallel Prolog architecture [11], and PW AM - a
Restricted AND-Parallel (RAP) Prolog architecture [35].

As stressed in the previous derivation of the Prolog CIF, good memory
referencing characteristics (e.g., high locality) are essential in a high performance
architecture. In the next chapter, the Prolog CIF and the W AM are shown to
have excellent memory referencing characteristics. In other words, the primary
advantage of these architectures is their storage model. One would hypothesize
that a parallel architecture based on this sequential architecture family would
perform well if it exploited a large enough grain of parallelism to remain within
the sequential storage model most of the time while executing. This is the
seminal idea behind various parallel Prolog architectures such as ANL W AM and
PWAM.

The key notion in RAP-Prolog is the annotation of a program with
conditional graph expressions (CGEs). A CGE consists of a condition followed
by a conjunction of goals. CGEs can appear anywhere a conventional goal can
appear in a clause, including nested within another CGE. The condition is a
logical combination of checks on any of the variables appearing to the left of the
CGE. The checks test independence and (stronger) groundness of sets of
variables. These checks can be expensive operations. A full check in general
requires traversal of all terms associated with the variables being tested;
however, much cheaper checks can be used in return for a certain loss of
parallelism. In addition, mode and type analysis performed by the compiler with
the aid of user annotation can reduce (or eliminate altogether) the number of
required checks.

Figure 2-16 shows the isotree/2 example of Section 1.1 written in RAP
Prolog. Note that if subtrees are left uninstantiated, isotree/2 attempts to
ensure isomorphism by binding. Suppose the user knows a priori that the first
tree is always ground, but the second tree may have uninstantiated, possibly
shared, subtrees. This information is indicated by the mode declaration
i sotree (q, ?), similar to a DEC-I0 Prolog mode declaration. indep /2 is
the check of the CGE containing both AND-parallel recursive goals. The checks
ensure that the second argument shares no variables, allowing the goals to be
executed in parallel. If the second argument was known to be ground
(isotree (q, q» or contain no shared unbound variables (isotree (g, i))
then no checks would be needed.

At runtime, the conditions are evaluated to either true or false. During the
execution of a CGE, if the conditions evaluate to true, the goals can be executed
in parallel and are known as a parallel call. Otherwise the goals must be
executed sequentially. A parallel goal is a goal invoked by a parallel call.
Failure of a parallel goal cannot be affected by alternative executions of other

www.manaraa.com

PROLOG ARCHITECTURES

:- mode isotree(q, ?).

isotree(void,void).
isotree(tree(X,Leftl,Riqhtl),

tree(X,Left2,Riqht2» '
(indep (Left2, Riqht2) I
isotree(Leftl,Left2) &
isotree(Riqhtl,Riqht2)

) .
isotree(tree(X,Leftl,Riqhtl),

tree(X,Left2,Riqht2» .
(indep(Left2,Riqht2) I
isotree(Leftl,Riqht2) &
isotree(Riqhtl,Left2)

) .
Figure 2-16: RAP-Prolog Program Example: isotree/2

63

parallel goals (because they are all independent), and so the entire CGE fails.
Failure back into a parallel call, from subsequent sequential goals outside the
CGE, causes all parallel goals to the right of the rightmost goal with remaining
alternatives to be unwound and restarted. This allows generation of tuples of
results in the same order as in a sequential execution. This policy is more
complex to implement than others which don't guarantee sequential backtracking
order; however, intelligent backtracking may be purposefully indicated by the
user's goal ordering and so order must be preserved. Other optimizations exist
for a determinate CGE which is followed by a cut.

Note that the design of the PW AM architecture and memory hierarchy must
account for the case when a parallel call spawns processes for all its conjunctive
goals, and these goals are passed arguments from the parent. In addition, these
arguments can be arbitrarily complex and contain hidden logical variables
through which results will be bound by the child and passed back to the parent.

PW AM is an extension of the W AM architecture. A fundamental design
criterion of PW AM is fast sequential execution for cases where there is no
available (AND) parallelism. To this end, CGE semantics are integrated into the
W AM storage model. PW AM extends the W AM storage areas as summarized in
Table 2-7 [36]. PWAM adds Parcall Frames and Markers to the WAM stack.
These can be allocated on a choice point stack in a split PW AM architecture.
PW AM also adds Goal Frames and Messages, in their own separate storage
areas. Each PW AM process references it own stack, heap, trail and pdl. The

www.manaraa.com

64 MEMORY PERFORMANCE OF PROLOG ARCHITECfURES

Frame In~e Location InWAM? Races? Locality
Env/Bookkeeping Stack Yes No Local
EnvlPermanents Stack Yes No! Global
Choice Points Stack Yes No Local
Heap Heap Yes No! Global
Trail entries Trail Yes No Local
PDL entries PDL Yes No Local
Parcallliocal Stack No No Local2

Parcalllgiobal Stack No N04 Globa13
Markers5 Stack No No Local
Goal Frames Goal Stack No Yes6 Global
Messages Mess. Buf. No Yes7 Global

Table 2-7: PW AM Storage Model (notes 1-7 in text)

Goal Stack and Message Buffer are shared by all processes executing on a single
processor (in the following chapters, references to the Goal Stack and Message
Buffer are called the communication references of the PW AM model). For a
complete discussion of the PW AM storage areas, see Hermenegildo [35, 36, 37].
Table 2-7 is annotated with the following notes.

1. The model guarantees that only one process can write each of these
variables (goal independence parallelism). Several (child)
processes can read them, but the parent process will not read them
until all children have succeeded. Child processes cannot read the
variables until these processes are scheduled.

2. The local part of the Parcall Frame contains bookkeeping
information for parallel processes.

3. The global part of the Parcall Frame includes the number of goals
still to schedule, the number of goals to wait on, and the process
slots (one per goal in the CGE).

4. Although the process slots are global, they don't need to be locked
- only a child process can write them and the only time the slots
may be read by the parent is after the child has completely
succeeded. Thus the situation in the Parcall frame is similar to that
in environments:

local part of Parcall Frame == bookkeeping part of environment
process slots == permanent variables

The other two global entries (the number of parallel goals to wait
on and the number of parallel goals still to schedule) are
semaphores and therefore require an atomic read-modify-write
operation to avoid races.

www.manaraa.com

PROLOG ARCHITECl'URES

5. For the purposes of memory referencing, the Input Markers, Wait
Markers, and Local Goal Markers are identical. They are also
similar to choice points, except that they do not save the argument
registers.

6. There can be races while stealing a goal from the Goal Stack
(several processes may simultaneously try to do so and the action
entails several memory references). Thus, a lock is needed for
controlling access to each processor's Goal Stack.

7. Several processes may simultaneously attempt to write into the
Message Buffer, so this needs to be locked; however, messages
represent a small percentage of references, since they are used only
during deep and "intelligent" backtracking across processors.

2.4. Summary

65

Several instruction set architectures for Prolog are introduced in this chapter.
Initially, a family of Prolog canonical interpretive forms (ClFs) is defined from
the semantics of Prolog with some ideas borrowed from existing Prolog
architectures. The ClFs define metrics that limit the execution performance of
Prolog - measurements of these metrics are presented in the next chapter.
Three ClFs are described: naive, traditional, and register-based. The naive and
traditional models are based on procedural language ClFs. Whereas the naive
model assumes a simple host, the traditional model assumes a host with a stack
buffer of unlimited size. The register-based CIF constrains the traditional CIF,
assuming a host with only a small register set.

The progression from one Prolog CIF to the next represents a refinement of
the ideas of canonical architectures developed by Flynn and Hoevel [27]. The
naive architecture directly corresponds to the Prolog language, to the extreme
degree that the entire name space is mapped into a single memory space. The
observation is made that references to local identifiers and arguments within a
scope can be captured for reuse by a hardware buffer. The traditional
architecture maps stack references into such a hardware stack buffer (of
unlimited size) in the underlying host. Such a model is "traditional" in the sense
that procedural CIFs make a similar host assumption. This assumption is
possibly more warranted for procedural languages, which make frequent
procedure stack references, than for Prolog, where only 75% of the data
references are to the stack. Prolog makes frequent use of the heap also, for
dynamic creation and unification of data structures. The register-based CIF is a
further refinement of the traditional model, wherein the assumption of an

www.manaraa.com

66 MEMORY PERFORMANCE OF PROLOG ARCHITECfURES

underlying stack buffer is removed and replaced with a register set. These
changes represent a relaxation of the correspondence between the CIF and
Prolog, and a divergence from the traditional view of canonical architectures.
The constraints imposed, however, offer higher performance for direct
correspondence architectures (DCAs), i.e., Prolog architectures that can be
implemented on realistic hosts. A DCA based on the traditional CIF is the
Prolog-tO abstract machine. A DCA based on the register-based CIF is the
Warren Abstract Machine (W AM). These two architectures, in addition to
PW AM, a Restricted AND-Parallel Prolog extension of the W AM, are described
in this chapter.

The presentation given here of the Prolog-lO and W AM models constitute a
conventional or evolutionary approach to Prolog architecture design. These
environment stacking architectures represent the two most popular Prolog
implementations. A comparison of the high-level memory-referencing
characteristics of the two is given. The results suggest that the W AM makes
fewer memory references in determinate programs, Prolog-lO makes fewer
memory references in shallow nondeterminate programs, and both make
approximately equal numbers of r·:!ferences in deeply nondeterminate programs.
Thus the W AM achieves its goal of optimizing the execution of determinate code
(with respect to Prolog-lO), at the cost of slower nondeterminate execution.
What was not known at the time of the design of the W AM, however, was the
extent of shallow nondeterminate execution in seemingly determinate programs.
As is shown in the next chapter, realistic Prolog programs, although largely
determinate, display much shallow backtracking when translated with a simple
compiler. The W AM, however, has advantages over Prolog-10, such as higher
locality resulting in more efficient use of storage. In realistic implementations,
these space saving advantages can outweigh the speed disadvantages caused by
inefficiencies in backtracking.

A final sequential environment-stacking architecture, called Lcode, is
described in this chapter. Lcode is the actual instruction set emulated and
measured for this book. Lcode is closely related to the W AM, and the
differences between the two do not significantly affect the measurements
presented here. All sequential architectures measured, including the Prolog CIFs
and split-stack architectures, are modeled with variations of the Lcode compiler
and emulator. The parallel Prolog architecture, PW AM, is modeled with a
separate compiler and emulator. These tools are further described in the next
chapter.

A high-level description of the PW AM model is also given in this chapter.
PW AM is chosen for study because it is closely related to the W AM, allowing a
fair comparison of the overheads incurred by the exploitation of parallelism. In

www.manaraa.com

PROLOG ARCHITECTURES 67

addition, it appears promising that the PW AM model can be extended for OR
parallelism, e.g., with the mechanisms introduced in ANLW AM [11].

www.manaraa.com

3 Prolog Architecture Measurements

In this chapter, a methodology is described for measuring the dynamic
memory performance of Prolog programs compiled into the instruction set
architectures described in the previous chapter. The benchmarks measured with
this experimental approach are then described. Next, high-level statistical
characterizations of Prolog's memory request behavior are presented. From
these high-level statistics, problem areas and performance bottlenecks are noted
which give credence to various local memory models. In the next chapter, these
memory models are described and simulation measurements are presented and
analyzed.

Several important results are presented in this chapter. Shallow backtracking
is shown to dominate the Prolog data bandwidth requirement. This is shown by
analysis of choice point referencing characteristics, as well as by measurements
of the effectiveness of "ideal" indexing in the Prolog CIF. In addition, the W AM
stack is shown to exhibit high locality of reference, indicating that various types
of stack buffers can effectively reduce Prolog's bandwidth requirement. It is
shown, however, that the heap exhibits little locality, and therefore caches will
likely be necessary to achieve truly high performance execution. Finally, it is
shown that PW AM sacrifices little of the W AM's memory-referencing efficiency
to achieve parallelism.

www.manaraa.com

70 MEMORY PERFORMANCE OF PROLOG ARCHITECI'URES

3.1. Methodology

Memory reference behavior is measured with address-trace-driven memory
simulators. Traces are produced with an Lcode emulator that executes object
files produced by an Lcode assembler. The assembler translates Prolog compiler
output. These tools are summarized in Table 3-1 and illustrated in Figure 3-1.
The tools run on the Stanford Emulation Laboratory V AX-I 1/750, under Unix8

4.3 BSD.

tool
compiler
assembler
emulator
simulators

input
Prolog source
Lcode assembler
binary object
trace file

output
Lcode assembler
binary object
trace file
statistics

implementation
Prolog
LEXlYACC
C
C

Table 3-1: Stanford Emulation Laboratory Prolog Tools

3.1.1. Compiler

The compiler is a modified version of the DC Berkeley PLM compiler [89].
The compiler, written in Prolog, is about 2900 source lines. The modifications,
listed below, were introduced for another study [83], but do not significantly
affect the benchmarks measured here. Refer to Tick [83] for a complete
description of the optimizations .

• removal of cdr-coding
cdr-coding was not deemed a significant attribute of the architecture
for the benchmarks considered.

• static-sized environments
environment trimming was removed to simplify the architecture .

• increased number of registers
16 registers were implemented as opposed to eight in the PLM. Of
the benchmarks considered in this book, only CHAT is affected by
the increase in registers, although not significantly [54]. Since
variable-sized choice points are used, as in the W AM, increasing the
number of registers does not increase choice point overheads, as in
thePLM.

8Unix is a Trademark of Bell Laboratories.

www.manaraa.com

PROLOG ARCHITECTURE MEASUREMENTS

Prolog
source , -

PLM compiler/
Stanford optimizer

t

I assembler I
t

I emulator I •
trace
file

l'--• • •
high-level stack cache memory buffer 000

simulator simulator
simulator

• • • Figure 3·1: Prolog Memory Performance Measurement Methodology

• arithmetic instructions
arithmetic and other primitive operations, e.g., var/l, have been
lifted from built-in predicates to the instruction set.

• conditional branches
a peephole optimization was introduced wherein under certain
circumstances, simple built-in conditionals, e.g., >/2, can be moved
up into the head of a clause. If a conditional can be moved up in
front of choice point creation, it is replaced with a conditional
branch. Subsequently, if the choice point creation meets a cut, both
are removed.

• incremental indexing
this type of indexing is a slight modification of the method outlined
by Warren [96], whereby the number of branches is reduced. One

71

www.manaraa.com

72 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

measure of the effectiveness of an indexing method is the ratio of
try me else to try indexing instructions. try is an
unconditional branch, whereas try me else is not. Without
incremental indexing, the ratio is about 3:1 [21], whereas with
incremental indexing, this ratio is about 25: 1.

3.1.2. Assembler

The assembler is written in C around a LEXlYACC [47, 40] parser of about
1000 source lines. The function of the assembler is to transform the symbolic
intermediate code generated by the compiler into an object image which is easily
interpreted by the emulator. The advantage of having the emulator read an object
image is the significantly reduced time in loading executable programs.

3.1.3. Emulator

The Prolog emulator, used to measure the memory performance of
benchmark programs, is implemented in C. Arbitrarily large programs can be
emulated (within the UNIX address space limits). The emulator kernel is about
2000 source lines with another 3000 source lines of support code. The emulator
kernel consists of a single large function wherein each intermediate level
instruction is implemented. Primitive procedures not transformed by the
compiler are dynamically interpreted in C. Notably, input primitives are
implemented in LEXlY ACC. A side effect of executing the program is the
production of a memory reference trace file. Both data and instruction references
can be traced. An emulator option is procedure profiling, useful in determining
Prolog program hot spots. Memory references made by primitive procedures are
counted as other references; however, these primitives are not restricted to using
the state registers of the W AM model. The assumption is that these primitives
would be microcoded and the required temporary registers would be available.
The emulator also has limited debugging capabilities. The code space can be
displayed through a disassembler and a single break point can be set. Memory
areas and terms can be displayed symbolically. The emulator (with tracing off)
runs at 3900 LIPS for the "naive reverse" benchmark.

The emulator has alternative definitions for certain operations, allowing
emulation of Lcode, the Prolog CIFs (including the split-stack model and ideal
indexing), and shadow register architectures. W AM instructions are emulated in
close correspondence to the detailed semantics given by Warren [96]. Common

www.manaraa.com

PROLOG ARCHITECfURE MEASUREMENTS

simulator
choice point buffer
stack buffer
E-stack buffer
copyback cache
"smart" cache
write-through cache
hybrid cache
instruction buffer
multiprocessor caches

Table 3-2:

references captured
data (choice points)
data (choice points and environments)
data (environments)
data and/or instructions
data
data
data
instructions
data

Local Memory Simulators

73

Lcode operations which lend themselves to alternative semantics include general
unification, cut, indexing instructions, and built-ins. The emulator
implementations of these operations are described in detail in Tick [84].

3.1.4. Simulators

The memory simulators are C programs that simulate various parameterized
local memories driven by trace references. The simulators are summarized in
Table 3-2 and described in detail in the next chapters. Note that all memory
simulations were conducted with a "cold start," i.e., measurements were taken
beginning with the first instruction of each benchmark program, assuming the
local memory was initially empty.

3.2. Benchmarks

The four Prolog benchmark programs studied in this book are the CHAT
English language parser, the Berkeley PLM Prolog compiler, the Quintus Prolog
compiler (QCl), and the Intuitionistic Logic Interpreter (ILl). Two compilers
were included because they characterize different programming styles, as
described below. CHAT is a database query system written by D. H. D. Warren
and L. Periera [95]. Only the front-end parser is used as a benchmark here. The
PLM benchmark (not to be confused with the PLM machine) is a slightly
modified version of the PLM Prolog compiler, written by P. Van Roy. This

www.manaraa.com

74 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

compiler does clause and procedure (indexing) compilation. The QCl
benchmark is the Quintus Computer Systems Inc. clause compiler, written by
Warren. Neither compiler benchmark generates code - they stop after
producing an internal form of W AM code, and both are tested with different
input data. ILl, the Intuitional Logic Interpreter, is a natural deduction theorem
prover written by S. Haridi.

CHAT, originally written in DEC-lO Prolog, has a simple, pure style, being
derived from grammar rules (see [78, p. 256]). PLM, originally written in C
Prolog, has the most complex style, using disjunction and conditionals
extensively. PLM originally included code with side effects: an intelligent
backtracking register allocator and a garbage collector. The register allocator
was retained, by implementing a simplified record primitive, because it has a
significant effect on the measurements. The garbage collector was removed.
QCl, originally written in Quintus Prolog, has a cleaner style than PLM. QCl
was written to take full advantage of indexing whereas PLM was not. ILl,
originally written in IBM-370 Prolog, is the shortest program of the set, being an
interpreter. It is pure code, relying on Prolog unification and call to do meta
level reduction.

With only superficial knowledge of the programs, it was expected that
CHAT would display the characteristics of a highly nondeterministic program:
much backtracking, using choice points and writing environments which are
never read because of failure. PLM and QCl were expected to display
characteristics of highly deterministic code: little deep backtracking and more use
of the heap. ILl was expected to display characteristics of a meta-level
interpreter: much heap and pdl usage. Not all of these predictions are accurate,
as is discussed in the following sections.

The benchmarks' characteristics are summarized in Table 3-3. The ratios are
approximate, e.g., clauses/procedure is calculated as the total number of clauses
divided by the total number of procedures. The mean ratios and all mean
statistics presented in this thesis are calculated by weighing each benchmark
equally. Static measures give an indication of program size, complexity, and
consistency. Matsumoto [50] studied 15 large Prolog benchmarks and found
similar static characteristics.

Dynamic measures give high-level execution characteristics, e.g., data and
instruction references per instruction. A reference is a 32 bit word accessed
from/to memory. Register-to-register transfers are not considered references.
Instruction references are calculated assuming byte encoded formats (see Section
3.3.2). In the queueing models of subsequent chapters, the statistic

www.manaraa.com

PROLOGARCHITECTURE~UREM~ 75

nrOl:ram CHAT PLM QCl ILl mean
static
source lines 850 1238 1040 316
procedures 157 139 133 51
clauses 500 383 576 141
Lcode instructions 6439 8694 8269 4478
clauses/procedure 3.18 2.76 4.33 2.76 3.25
instructions/clause 12.9 22.7 14.4 31.7 20.4
instructions/procedure 41.5 62.5 62.2 87.8 63.5

dynamic
procedure invocations 47677 36442 41858 17870
Lcode instructions 587024 616053 674537 283750
instructions/invocation 12.3 16.9 16.1 15.9
data references 1347671 1530648 1426098 674013
instruction references 430715 376236 499043 178908
data ref/instr ref 3.13 4.07 2.86 3.77 3.46
data ref/instr (ud) 2.30 2.48 2.11 2.38 2.32
instr ref/instr (ui) 0.734 0.611 0.740 0.631 0.679

Table 3-3: Summary of Prolog Benchmarks' Characteristics

U = 3.0 mean references per W AM instruction9

is frequently used. U = u r + Uw = '\)d + '\)i corresponding to reads and writes per
instruction and data and instruction references per instruction. Huck [39J reports
means of 0.524 data words referenced per instruction and 0.837 instruction words
referenced per instruction for FORTRAN on the IBMl370. For PascaVVS on the
IBMl370, he reports a mean of 0.84 data words referenced per instruction. For
FORTRAN on the VAX 111780, he reports a mean of 1.31 instruction words
referenced per instruction. These results confirm that the W AM instruction set is
more potent and more tightly encoded than a conventional instruction set.

!Inu-oughout the remainder of the book, conclusions drawn about the "W AM" architecture
are based on measurements taken of the Lcode architecture, a close variant of the W AM,
described in Section 2.2.4.

www.manaraa.com

76 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

3.3. W AM Referencing Characteristics

3.3.1. Data Referencing

Memory use statistics are now presented for the benchmarks, assuming a
monolithic memory of sufficient size to contain the entire stack, heap, trail, pdl,
and code space of the Prolog machine model. Table 3-4 shows the maximum
dynamic extent of each data area. The PLM garbage collection facility was
turned off, accounting for the runaway heap. The other programs do not have
this problem because they do not create large structures (recall QCl is a clause
compiler). As hypothesized, ILl makes significant use of the heap - the heap
grows about three times larger than the stack. Notice that general unification,
which uses the pdl as a call stack (with three word frames) does not deeply
recurse for any of these benchmarks.

benchmark stack heaR trail Rdl
CHAT 1845 882 258 6
PLM 1577 20013 2628 6
QCl 1571 2675 590 6
ILl 423 1263 84 3

Table 3-4: Runtime Data Areas in Words

Table 3-5 shows memory data reference statistics broken down by area and
by type. The stack references are categorized as choice point (cp) or
environment (env). On average the benchmarks do 13% heap referencing and
very little trail and pdl referencing. Read to write ratios differ significantly
among areas. Heap references are about 2:1 reads to writes, except for CHAT
which does the least heap referencing. CHAT does more heap writes than reads,
attributed to deep backtracking. Choice point references are consistently about
1: 1 reads to writes, indicating that most choice points are restored at least once.
Environment references are about 1:2 reads to writes except for QC1, which has
a closer ratio. These ratios indicate that most environments are allocated and
never read because of failure.

ILl shows the greatest percentage of heap referencing, as expected of an
interpreter. As a result of shallow backtracking, PLM shows the greatest
percentage of choice point referencing, as expected of a program written without
indexing in mind. CHAT shows the greatest percentage of trail referencing, by a
wide margin, as expected of a nondeterminate program. Interestingly, CHAT

www.manaraa.com

PROLOG ARCHITECfURE MEASUREMENTS 77

area read % write % total %
cp 348191 56.4 268918 43.6 617109 45.8
env 132616 35.2 244130 64.8 376746 28.0
heap 109909 45.7 130796 54.3 240705 17.8
trail 51082 50.0 51082 50.0 102164 7.6
pdl 5451 49.8 5496 50.2 10947 0.8
total 647249 48.0 700422 52.0 1347671 100.0

CHAT Data Referencing Profile

area read % write % total %
cp 494678 53.6 428111 46.4 922789 60.3
env 92185 34.7 173151 65.3 265336 17.3
heap 202019 69.5 88755 30.5 290774 19.0
trail 14151 50.0 14156 50.0 28307 1.9
pdl 9669 41.2 13773 58.8 23442 U
total 812702 53.1 717946 46.9 1530648 100.0

PLM Data Referencing Profile

area read % write % total %
cp 413119 56.8 314556 43.2 727675 51.0
env 150061 42.4 203864 57.6 353925 24.8
heap 184016 65.4 97166 34.6 281182 19.7
trail 22685 50.0 22685 50.0 45370 3.2
pdl 8859 49.4 9087 50.6 17946 U
total 778740 54.6 647358 45.4 14260982 100.0

QCl Data Referencing Profile

area read % write % total %
cp 215406 58.9 150382 41.1 365788 54.3
env 58638 39.4 90062 60.6 148700 22.1
heap 90146 63.6 51602 36.4 141748 21.0
trail 4568 49.8 4599 50.2 9167 1.3
pdl 4305 50.0 4305 50.0 8610 U
total 373063 55.3 300950 44.7 674013 100.0

ILl Data Referencing Profile

Table 3-5: Data Referencing Characteristics of Benchmarks

www.manaraa.com

78 MEMORY PERFORMANCE OF PROLOG ARCHITECfURES

60

50

40
Q)
Cl
ctl

30 'E
Q)

e
Q)

20 c.

10

0
c:p anv ~ trail pell

Figure 3-2: Data References By Area

shows the least percentage of choice point referencing, indicating that even for
well-written determinate programs, such as QCl, shallow backtracking
dominates Prolog referencing characteristics.

Note that the environment allocate instruction, as implemented in the
Lcode emulator, writes four words of bookkeeping information. Warren claims
this can be reduced to two words [96] at the cost of impacting other instructions;
however, four words of bookkeeping information is more appropriate for
modeling real systems (e.g., PLM and PSI-II). The data in Table 3-5 are
summarized in Figure 3-2, which shows the data areas by percentage for the
mean of all benchmarks.

Approximately 47% of Lcode data references are writes. Huck [39] reports
that both IBMl370 and V AX FORTRAN programs display approximately 18%
data writes. Mulder [55] reports approximately 25% data writes for Pascal
programs, independent of architecture. The increased Lcode write traffic is
attributed to setting up for backtracking, failure and structure copying. The high
percentage of choice point writes is due to the method used to implement
backtracking. As mentioned above, the high percentage of environment writes is
an indirect result of failure. The high percentage of heap writes is caused by the
policy of structure copying.

The statistics collected by the high-level memory simulator are listed below.
For each of these statistics, frequency distributions are shown for each
benchmark as well as the average of the benchmarks. Note that the total area

www.manaraa.com

PROLOG ARCHrrECl'URE MEASUREMENTS 79

statistic area mean 95%t
object size cp 11.0 words 13

env 9.3 15
read depth cp 10.8 30

env 22.1 64
heaQ 345 >1200

write depth cp 5.0 10
env 9.7 29
heaQ 86.8 >120

total depth cp 8.2 21
env 14.2 40
heaQ 261.5 >1200

reset depth cp 39.6 55
env 17.7 75
heap 17.9 50

t refers to 95% quantile

Table 3·6: Summary of High·level Prolog Memory Statistics

under each distribution is one. The mean and 95% quantile of the mean
distributions are summarized in Table 3·6. The area under each distribution to
the left of the 95% quantile sums to 0.95 .

• object size
• choice point size - A choice point consists of an entry

indicating its size, entries corresponding to the values of six
state registers, and the parameters being passed, taken from
the temporary registers. Thus the minimum choice point size
is seven words, corresponding to a procedure with no
arguments. Choice point size is sampled for each choice point
reference.

• environment size - An environment consists of an entry
indicating its size and entries corresponding to the values of
three state registers and the clause's permanent variables.
Thus the minimum environment size is four words,
corresponding to a procedure with no permanent variables.
Environment size is sampled for each reference to the current
environment. The sizes of deep environments referenced
during dereferencing are not counted .

• reference depth - Note that this statistic is measured for read,
write, and total references .

• choice point depth - This statistic is sampled for each
choice point reference. It is the distance from the reference to
the top of stack. Reference depths of less than seven words

www.manaraa.com

80 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

are guaranteed to reference a choice point on the top of stack.
The read depth indicates the type of backtracking because
most choice point read references are generated during
procedure failure. Shallow backtracking is evident when the
choice point read depth is small. Large read depths imply
deep backtracking.

• environment depth - This statistic is sampled for each
environment reference. It is the distance from the reference to
the top of stack. Reference depths of less than four words are
guaranteed to reference an environment on the top of stack.
Environment depth indicates the proportion of references to
deep environments, i.e., environments hidden by choice
points.

• heap depth - Sampled for each heap reference, this is the
distance from the reference to the top of heap. Heap depth
indicates the locality of heap references .

• reset depth
• choice point reset depth - This statistic is sampled for each

instruction which resets the current choice point. It is the
distance from the top of stack after resetting the choice point,
to the previous top of stack. Recall that the top of stack is
defined as the topmost environment or choice point.
Deallocating choice points mayor may not affect the top of
stack. This statistic is a measure of stack locality and type of
backtracking. Large reset depths indicate deep backtracking.
Zero reset depth often corresponds to cuts.

• environment reset depth - This statistic is sampled for each
instruction which resets the current environment, namely
deallocate and fail. It is the distance from the top of
stack after resetting the environment, to the previous top of
stack. A large reset depth signifies that a series of
environments has been popped from the stack, i.e., nested
determinate procedure calls have terminated (either
successfully or otherwise). Zero reset depth signifies
termination of a nondeterminate procedure call, i.e., one that
left at least one choice point on the stack.

• heap reset depth - This statistic is sampled for each failure.
It is the distance from the top of heap after failure to the
previous top of heap. Recall that during failure, the heap
pointer, H, is reset to the heap backtrack pointer, HB. This
statistic indicates the efficiency of this automatic type of
garbage collection. Zero reset depth indicates that no heap
space has been reclaimed.

• deference chain length - This statistic is sampled for each
dereference operation executed by an instruction or built-in
procedure. Recall that the Lcode architecture may bind a variable to
an object by creating a pointer from the variable to the object.
Binding a variable to another variable may result in a double pointer

www.manaraa.com

PROLOG ARCHITECTURE MEASUREMENTS

chain and so forth. The dereference chain length is the number of
memory references needed to fully dereference a variable. Zero
length indicates that the variable is bound to an immediate value.

81

Figures 3-3 and 3-4 show distributions of stack object size. The maximum
size choice point is 21 words, generated for the nondeterminate procedure with
the greatest number of arguments. The mean size is 11.0 words, and so a
nondeterminate procedure contains an average of 4.0 arguments. The 95%
quantile is 13 words. 98.0% of all dynamically created choice points are less
than 16 words long (hold fewer than nine arguments). The PLM architecture
constrains choice points to be fixed at 15 words - this upper bound appears to
be a reasonable choice. CHAT procedures have more arguments on the average
than the other benchmarks because of the method of translation from grammar
rules to simple clauses.

The maximum size environment is 24 words, generated for the procedure
with the greatest number of permanent variables. The mean size is 9.3 words,
and so an environment contains an average of 5.3 permanent variables. The 95%
quantile is 15 words. The statistics indicate that the four bookkeeping words per
environment occupy 43% of the environment on average. A 43% overhead is
extremely high and skews the read:write ratio for environment references. The
ratio is skewed because the overhead entries are always written in the
allocate instruction, whereas the number of subsequent environment
references may be reduced by failure. CHAT procedures have more permanent
variables on the average than the other benchmarks because of the complexity of
the grammar rules.

Figure 3-5 shows the mean choice point reference depth distributions broken
down into read and write distributions. Most references are made near the top of
stack. Depths 0-6, referring to a choice point at the top of stack, are unevenly
distributed because this information is not used uniformly. For instance most
writes are made at a depth of six because retry instructions overwrite the P
pointer saved in entry seven of the CUITent choice point. The maximum read
depth is greater than 120 words and the long read depth tail significantly
influences the mean distribution. Whereas the mean write depth is 5.0 words, the
mean read depth is 10.8 words. The mean choice point reference depth is 8.2
words with 95% quantile at 21 words.

Figure 3-6 shows the mean environment reference depth distributions. The
mean depth is 14.2 words. More significant is a 95% quantile of 40 words
indicating a long tail due to referencing deep environments. Of the benchmarks
measured, CHAT displays the longest tail. The maximum depths of all the
benchmarks exceed 120 words. The split-stack model was proposed as a partial
solution to this problem.

www.manaraa.com

82 MEMORY PERFORMANCE OF PROLOG ARCHITECI'URES

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

-
CHA

- .. 10 11 12 13 14 15 1617 18

0.8.:l-_______________ -nr __

0.7~-----------------------------L~~ __ 0.6.:l-__________________ _
0.5
0.4 4---------
0.3 +-_______ _
0.24-_______ _

0.1 4--------~ 0.0

0.8 4-----------------n~--
0.7~---------------__ ----~~--0.6.+-__________________ _

0.5~----------------------------__ ---0.4 -+-________ _
0.34-__________ _
0.2
0.1 4----------==
0.0

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

-

.

8 9 1011121314

8 9 10 11

..

0.8 ~===========:::rn~C 0.7 -+
0.6 +-__________________ _
0.5 ~_------------------0.4

0.3 j~:::::::::::::::::
0.2 ~-------0.1
0.04.---------8 9 1011 12131415161718

Figure 3-3: Choice Point Size Frequency Distributions (words)

www.manaraa.com

PROLOG ARCHITECfURE MEASUREMENTS 83

0.4

0.3

0.2

0.1

0.0

0.4

0.3

0.2

0.1

0.0
0.4

0.3

0.2

0.1

0.0
0.4

0.3

0.2

0.1

0.0

0.4

0.3

0.2

0.1

0.0 14 16 18 20

Figure 3-4: Environment Size Frequency Distributions (words)

www.manaraa.com

84 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

0.14 read depth
0.12 -t------------------------
0.10 +-----------------------
0.08 +----------------------
0.06

0.04

0.02

0.00
0.14 40

write depth
0.12 -t--+----------------------
0.10 -+--+----------------------
0.08

0.06

0.04

0.02

0.00
0.14 40

total depth
0.12 -t------------------------
0.10 -t--+----------------------
0.08

0.06

0.04

0.02

0.00
o 40

Figure 3-5: Choice Point Depth Frequency Distributions (words)

www.manaraa.com

PROLOG ARCHITECTURE MEASUREMENTS

0.12

0.10

0.08

0.06

0.04

0.02

0.00

0.12

0.10

0.08

0.06

0.04

0.02

0.00

.0.12

0.10

0.08

0.06

0.04

0.02

0.00

read depth

write depth

total depth

Figure 3-6: Environment Depth Frequency Distributions (words)

85

www.manaraa.com

86 MEMORY PERFORMANCE OF PROLOG ARCHITECfURES

read write total
mean 95%1 mean 95% mean 95%

CHAT 74.2 350 5.6 21 36.2 210
PLM 984.6 >1200 291.9 >120 772.8 >1200
QCl 259.5 900 43.3 >120 184.4 800
ILl 62.0 430 6.3 14 41.4 160

t refers to 95% quantile

Table 3·7: Heap Reference Depth Statistics (in words)

An important statistIc of a conventional architecture is call depth
distribution, i.e., the number of nested procedures entered before one is exited.
Call depth indicates the locality of the activation stack, possibly justifying a
hardware stack buffer of the type discussed in the next chapter. For Prolog, call
depth is not an accurate statistic because the environment stack (with or without
choice points) is not a true stack. In a true stack, the current scope is always
represented by the top frame in the stack. In Prolog, the current scope may be
represented by an environment buried in the stack because choice points created
after that environment freeze the stack. When a procedure call is made, the
caller's environment is not necessarily adjacent to the callee's environment (at
the top of stack). In addition, last call optimization can cause the caller's
environment to be replaced by the callee's environment. These two effects
lessen the usefulness of the call depth statistic.

The stack reference depth distributions given in Figures 3·5 and 3·6,
however, give a more general statistic useful for Prolog. These distributions
indicate that a small hardware stack buffer can capture much of the locality of
choice point and (less of) environment references. These statistics indicate that a
single choice point buffer will capture more references than any other buffer of
comparable cost.

Table 3-7 shows the mean and 95% quantile of the heap reference depth
distributions of the individual benchmarks, broken down by read, write, and total
references. Table 3-6 gives the average statistics across the benchmarks;
however, these and the mean distributions are not accurate because, as seen in
Table 3-7, the variance is very high. The heap referencing distributions have
long tails. PLM has extreme behavior with respect to the other benchmarks (see
Figure 3-4 also), partially because the specialized PLM garbage collection
facility was removed. The write depths are shallow because most heap writes
occur during structure creation, at the top of heap. Reads, however, often occur
deep in the heap, during unification of passed structures. The distribution

www.manaraa.com

PROLOG ARCHITECI'URE MEASUREMENTS 87

statistics suggest that the high spatial locality exhibited by writes can be
exploited by local memories that capture the top of heap. The write distribution
statistics indicate that a "smart" memory, which does not continually prefetch
the top portion of the heap (because it will be overwritten), can significantly
reduce heap traffic.

Figure 3-7 shows the choice point reset depth distributions. The mean is
39.6 words with 95% quantile at 55 words. The maximum reset depth is greater
than 120 words. CHAT differs from the other benchmarks because it has no cuts
and therefore no zero depths. Figure 3-8 shows the environmen~ reset depth
distributions. The mean is 17.7 words with 95% quantile at 75 words. The
maximum reset depth is greater than 120 words. All these benchmarks have
approximately equal zero reset depths. This indicates the prevalence of shallow
choice points on the stack, even for supposed determinate programs, such as QC1
(which, in fact, has the highest mean reset depth of 21.5 words).

Figure 3-9 shows the heap reset depth distributions. The mean is 17.9 words
with 95% quantile at 50 words. Heap reset depth indicates the amount of heap
space automatically reclaimed during backtracking. On average, resetting the
heap cleans up only a small portion of the heap. Figure 3-9 indicates however
that this behavior is highly program dependent - ILl and CHAT display
instances of larger reclamations. In comparison, consider that explicit Prolog
garbage collection reclaims about 50% of the heap on average [l00]. This
statistic, however, is also highly program dependent.

Figure 3-10 shows the dereference chain length distribution for the combined
benchmarks. The mean is 0.32 references. The PLM benchmark has a procedure
that unravels terms in the input source program. This procedure can produce
arbitrarily long dereference chains, e.g., unraveling a term nested ten levels deep
produces a chain of length ten. Since deeply nested Prolog source terms are rare,
this benchmark rarely produces long dereference chains. These results indicate
that optimizations to further shorten pointer chains are not needed.

3.3.2. Instruction Referencing

Instruction bandwidth requirements are measured in several different ways in
this section, clarifying design tradeoffs between encoding efficiency and
decoding complexity. An instruction is encoded into an opcode, format, and
operand(s). The opcode and format are not clearly separated in the Lcode
instruction set because there is little orthogonality, i.e., reuse of the same format
among different opcodes. Instructions can be encoded with a fixed (e.g.,
IBMl370) or variable (e.g., V AXIl I) number of operands. In addition, the

www.manaraa.com

88

0.7
0.6
0.5
0.4
0.3
0.2
0.1

8:9
0.6
0.5
0.4
0.3
0.2
0.1

8:9
0.6
0.5
0.4
0.3
0.2
0.1

8:9
0.6
0.5
0.4
0.3

0.2
0.1
0.0
0.7

0.6
0.5

0.4
0.3
0.2
0.1
0.0

MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

-

CHAT

• • • I . .
0 20 40 60

PLM

-II - I • 1
- 0 20 40 60

aC1

• I - I I I _
I

- 0 20 40 60

ILr

• I • I •
- 0 20 40 60

mean

• • r . I I I • •
I

o 20 40 60

Figure 3-7: Choice Point Reset Depth Frequency Distributions (words)

www.manaraa.com

PROLOG ARCHITECTURE MEASUREMENTS 89

0.7 -
0 .64w-------------------------------~vH~
0.5 ~.------------------------
0.4 -1.-----------------------------
0.3 -1.------------------------
0 .2~----------------------------

0.1 ~---------I-.--. -.----_------~------------
~O 0 ~
0.7 - PLM 0.6 -II _________________________________ --L~""__
0.5 -11------------------------
0.4 ~.-------------------------------
0.3 -/1--------------------------------
0.2 ~ .. -----------------------
0.1 ~---___:.=-------I------------

•• • O~ 0 ~ 00
0.7 - aC1 0.6 4= _______________________________ ---loawu-_

0.5 -/1-- - ----------------------
0.4 ~~------------------------------
0.3 -11-----------------------------
0.2 -11--------------------·-·-·--.. --.. ----.. -·---
0.1 ~--------------------------------------

00 0.0 0 ~

0.7 - III
0.6-1.----------------------------Ud---
0.5 -11------------------------------------
0.4 -11------------------------------
0.3 -11--------------------------
0.2 -/1--------------------------------
0.1 -II-------------.- -t.i---------------------
~---~.~.L-A--~-~~~~.-----------~ 0.0 ~O 40 00

0.7 -
0.6-1_----------------------------------~rn~e~aUnL---
0.5 -11------------------------------------
0.4 ~I------------------------------------
0.3 -11--
0.2 -11-------------- --------------------
0.1 -11---------------------------

• • - • • I • 0.0 ~O-------IL...--------L.......JL-....IL.. __ 4O:-----------------~--::00

Figure 3·8: Environment Reset Depth Frequency Distributions (words)

www.manaraa.com

90

0.4

0.3

0.2

0.1

8·0
.4

0.3

0.2

0.1

8:2
0.3

0.2

0.1

0.0
0.4

0.3

0.2

0.1

0.0
0.4

0.3

0.2

0.1

0.0

MEMORY PERFORMANCE OF PROLOG ARCHITECI'URFS

CHAT

QC1

Figure 3-9: Heap Reset Depth Frequency Distributions (words)

www.manaraa.com

PROLOG ARCHITECTURE MEASUREMENTS 91

80
67

60
<II
Cl ca
C
<II

40
~
<II
Q.

20

0.725

0
o

number of references

Figure 3·10: Dereference Chain Length Distribution

instruction may be aligned on word, halfword, byte, or bit boundaries. These
storage units are called instruction syllables. Bit alignment allows tight encoding
using log2 encoding schemes as in ADEPT [91]. The size and placement of
immediate constants and branch offsets and addresses also offer variability of

design. These parameters are difficult to design without analysis of many large
programs, where the mean and peak numbers of interned constants (in the
symbol table) and accurate branch distance distributions can be calculated.
Because only a small set of benchmarks is analyzed in this book, no definitive
statement is made concerning the "best" instruction formats. Instead, several
alternatives are presented.

Table B·l in Appendix B summarizes the sizes of each Lcode instruction. In
this table, a word and byte count is given for each instruction. Instructions with
two byte (or word) counts indicate local branch target operand(s) which can be
encoded as either one or two byte offsets. Figure 3·11 shows the distribution of
instruction size (assuming one byte offsets) for all instructions referenced during
execution of the benchmarks. The mean distribution is calculated weighing each
benchmark equally. The mean of the distribution is 2.6 bytes. Huck [39] reports
mean instruction lengths for typical FORTRAN programs of 3.35 bytes on an
IBMl370, and 5.23 bytes on a VAX 111780.

Instruction bandwidth is measured for the benchmarks in the following seven
ways.

1. word boundaries, halfword offset (from P) for local branch target

www.manaraa.com

92 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

50 en 100 89.9
ci ..,

40 80

OJ ..,
~ 30 u:i OJ 60

(\j ~ c
Q)

~
Q)
a.

~

C'! C
20 Q) 40 ..,

~
,. Q)

r-: a.
10 20

C'! 1.2
0 0 2 3 4 5 6 7 8 9 10 1 2 3

instruction size in bytes instruction size in words

Figure 3-11: Instruction Format Distribution

2. word boundaries, byte offset

3. byte boundaries, halfword offset

4. byte boundaries, 8/16 offset

5. byte boundaries, byte offset

6. bit boundaries, 8/16 offset

7. bit boundaries, 8/16 offset, log2 encoding of permanent register
specifiers (these specifiers can be decoded because the fixed size of
each environment is known).

The local branch offset in these encodings is either a byte, halfword, or "8/16" (a
combination of both). The 8/16 encoding uses whichever offset is appropriate
for an individual instruction. Thus byte offset encoding is somewhat optimistic
and halfword offset encoding is somewhat pessimistic. Table 3-8 lists the
relative instruction reference counts of the seven encoding schemes. These
counts are relative to the first encoding with word boundaries and halfword
offsets. As indicated, byte encoding (halfword offset) generates about 63% of
the instruction traffic of word encoding (halfword offset). Calculated over all
references (including data), traffic is reduced by about 8%. This savings,
representing the added efficiency of using smaller syllables, is significant
compared to that of other encoding attributes.

The savings in instruction traffic generated by the 8116 offset byte encoding
over the pessimistic (halfword offset) byte encoding is about 5%. This is a
savings of about 1 % for the mean total references. The cost of the more efficient

www.manaraa.com

PROLOG ARCHITECTURE MEASUREMENTS 93

instr branch
bound offset CHAT PLM QCl ILl mean

1. word 16 1.0 1.0 1.0 1.0 1.0
2. word 8 0.977 0.982 0.958 0.981 0.975
3. byte 16 0.654 0.597 0.652 0.603 0.627
4. byte 8/16 0.627 0.564 0.608 0.572 0.593
5. byte 8 0.626 0.561 0.604 0.567 0.590
6. bit 8/16 0.584 0.501 0.558 0.520 0.541
7. bitt 8/16 0.550 0.469 0.525 0.478 0.506

t log2 encoding

Table 3-8: Instruction References for Benchmarks (per Encoding 1)

encoding is a more complex assembler and two versions (one with byte offsets,
one with halfword offsets) of each local branch instruction.

The savings in instruction traffic generated by the standard bit encoding over
the byte encoding is about 9%. Log2 encoding of permanent register specifiers
saves about 6% over standard bit encoding. Again, calculated over all
references, the savings are insignificant. Mitchell [53] gives similar results for
Pascal programs. He reports that a Pascal DCA with bit encoded identifiers
saves 15% of the instruction traffic over byte encoding. The savings for Prolog
are lower because the instruction set is not as orthogonal as DCAs based on
arithmetic operations.

3.4. CIF Referencing Characteristics

In this section, measurements of CIF attributes are presented and compared
to W AM measurements. Recall that in Chapter 2, three Prolog CIFs are
introduced:

• naive CIF - this model, based on a frame stack, assumes a simple
host that requires a memory access for every data reference.

• traditional CIF - this model, also based on a frame stack, assumes
a complex host that requires no memory accesses to reference
frames in the stack.

'ster-based elF - this model, based on separate choice point
'!nvironment stacks, requires no memory accesses to reference
~ister set.

www.manaraa.com

94

instr
traditional ClF
naive ClF
register-based CIF

CHAT
1.00
1.00
1.19

MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

PLM
1.00
1.00
1.18

OC1
1.00
1.00
1.14

ILl
1.00
1.00
1.17

data CHAT PLM OC1 ILl
traditional CIF 1.00 1.00 1.00 1.00
naive CIF 4.64 4.83 4.74 4.65
register-based CIF 3.73 4.34 4.03 4.09

Table 3·9: Comparison Between Prolog CIF Memory Bandwidths

CHAT
ClFt 1.00
WAM 1.19
t assuming standard indexing

PLM
1.00
1.29

OC1
1.00
1.21

ILl
1.00
1.25

Table 3·10: W AM Instruction Bytes Referenced (per ClF)

CHAT PLM OC1 ILl
CIF total -:-1.,=0~0 __ -:-1:'::'0"70 __ ~1-,,:.0:.:::0 __ ---,1:.:..:.0~0
W AM data 1.30 1.24 1.55 1.31

instrt 1.21 1.28 1.39 1.31
total -:-1.,=2:;.8 __ -:-1.:::.2"=5 __ ---:1~.5:-::1-----:1~.3=-=1

naive:j: data 1.77 1.35 2.37 1.57
instrt 1.49 1.36 1.69 1.53
total 1.71 1.35 2.21 1.56

t assuming bit encoding
:j: no indexing

Table 3·11: Standard (W AM) Indexing Memory Bytes Referenced (per CIF)

CHAT PLM QC1 ILl
ClF 1.00 1.00 1.00 1.00
WAMt 1.01 1.16 1.24 1.08
naive:j: 1.53 2.43 2.49 3.07
t trail test only
:j: trail all

Table 3·12: W AM (De)trailing Memory Bytes Referenced (per CIF)

www.manaraa.com

PROLOG ARCHITECTURE MEASUREMENTS 95

Table 3-9 shows the relative instruction and data references generated by
these CIF models for the benchmarks studied. The traditional CIF, because it
generates the lowest bandwidth of the models considered, is used as the baseline
of this comparison, i.e., all reference counts are given relative to the traditional
CIF. Notes on Table 3-9 follow.

• The traditional CIF assumes tightly encoded instructions on bit
boundaries. All frame variable specifiers are 10g2 encoded. Recall
that the CIFs use variable length get/put Hst/ structure
instructions with n operands, where n is the anty of the structure.
This obviates unify instructions, but requires an additional three
bit tag per operand, indicating how the operand is to be processed
(e.g., as variable, value, constant, etc.). This also obviates the need
for read/write mode in the image architecture.

• The naive CIF is encoded identically to the traditional CIF.

• The register-based CIF assumes similarly encoded instructions;
however, only permanent variable specifiers are log2 encoded.
Register specifiers require four bits.

• Standard (single argument) indexing, a trail test, and a single stack
are assumed. These attributes are subsequently analyzed
individually.

Whereas, for the benchmarks measured, the register-based CIF instruction
bandwidth can be as much as 19% greater than the traditional CIF, data
bandwidth can be as much as 330% greater. This difference indicates the relative
importance of the instruction encoding and unlimited stack buffer assumptions in
the traditional CIF. The regist~r-based CIF can decrease the worst-case data
referencing of the naive model by only about 14%, compared to the 79% savings
of the traditional CIF.

Throughout the remainder of this section, the register-based CIF (simply
called "the CIF") is compared in greater detail with the W AM. Tables 3-10,
3-11, and 3-12 show the W AM reference counts relative to those of the CIF, for
various attributes. Each attribute is measured independently of the others.

Table 3-10 compares the instruction traffic of a standard byte encoded
W AM (with byte local branch offsets) with the tightly encoded CIF. The table
gives the number of W AM instruction bytes referenced per CIF instruction byte.
As indicated, the W AM encoding causes from 19% to 29% more instruction
traffic than the CIF encoding. For this comparison, both use standard (single
argument) indexing.

Table 3-11 compares the data and instruction traffic of W AM (single
argument) indexing with CIF ideal indexing. Also given is the traffic for a
naive architecture (not to be confused with the naive elF) with no indexing. The
table gives the number of memory bytes referenced per CIF memory byte. For

www.manaraa.com

96 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

CHAT PLM QCl ILl
depth(B-stack) 845 997 599 210
depth(E-stack) 1007 600 632 166
depth(single) 1845 1577 1571 423
% 100 101 78 89

data(single) 1.000 1.000 1.000 1.000
data(split) 1.015 1.025 1.018 1.023

Table 3-13: Data Referencing of Single and Split-Stacks (Per Single)

single-stack split-stack
statistic mean 95%1 mean 95%
cp depth 8.2 21 5.6 11
env depth 14.2 40 7.0 18
cp reset depth 39.6 55 42.1 55
env reset depth 17.7 75 14.6 51

t refers to 95% quantile

Table 3-14: Comparison Between Single and Split-Stack Models

this comparison, all the architectures use similarly tightly encoded instructions.
As indicated, single argument indexing generates from 25% to 50% more
memory traffic than ideal indexing. Lack of indexing generates up to 120%
more traffic than ideal indexing.

Table 3-12 compares the memory traffic devoted to (de)trailing (i.e., trailing
and detrailing) for the W AM (with a trail test) and the CIF (with both a trail test
and an inverse trail test). Also given is the traffic for a naive architecture with no
trail tests. Without a trail test, up to three times the memory traffic is generated
during (de)trailing. The inverse trail test saves from 1 % to 24% of the
(de)trailing traffic generated with a trail test. Since (de)trailing accounts for a
small percentage (on average less than 5%) of all memory references, this
attribute reduces memory references by very little.

Table 3-13 compares the maximum stack depths and data reference counts of
the single and split-stack models, relative to the single stack model. The register
based CIF model with standard indexing is assumed here. Since the maximum
depths of both the E-stack and B-stack may not occur simultaneously,
comparison with the single stack depth must be made carefully. In most cases
however, splitting the stack decreases the absolute stack depth.

The split-stack always makes more data references than the single stack, by

www.manaraa.com

PROLOG ARCHITECTURE MEASUREMENTS 97

1.5% to 2.5%. This is because management of two stacks requires an additional
state register, C, as discussed in Section 2.2.4. References to C itself are not
counted (just as with B in the single stack model), but management of two stacks
requires saving/restoring C from memory.

Table 3-14 compares the high-level memory characteristics which differ
between the single and split-stack models. As expected, the split-stack model
lessens object depth. Notice the 95% quantile of environment depth has been
halved to 18 words.

3.5. PW AM Referencing Characteristics

In this section, the Restricted-AND Parallel Prolog architecture (PW AM)
tools and the RAP-Prolog benchmark studied in this book are described. High
level memory referencing characteristics of the benchmark are then presented.

The PW AM tools [35] are illustrated in Figure 3-12. PW AM traces differ
from the W AM traces previously described in that each reference is marked with
a processor identifier. The PW AM emulator produces trace records in a round
robin fashion as it emulates an instruction on each of mUltiple processors.
References are not time-stamped, so this method is not entirely accurate;
however, since the PW AM emulator time slice is one instruction, inaccuracies
are not significant. The RAP-Prolog benchmark studied is deterministic in the
sense that the control flow of the program cannot depend on the execution timing
of the program.

The PW AM emulator uses the following control policies in addition to those
outlined in Section 2.3:

• When a parallel call is entered, i.e., the CGE condition evaluates to
true, the goals are executed sequentially if all PEs are busy.

• The parent process of a parallel call waits for either all of its child
processes to succeed, or one of its child processes to fail.

Sderiv, the simple parallel benchmark measured in this book, is shown in
Figure 3-13. The program is a synthetic variation of the symbolic differentiation
program given by Warren [93]. The original program has been modified by
adding two new differentiation rules which offer greater parallelism than the
original rules. The initial mode declaration states that the first two (input)
arguments of the d/3 predicate are completely ground, and that the third (usually
output) argument contains no shared unbound variables. This declaration ensures
that no checks are required in the CGEs. Because all body goals are placed in the
CGEs, last call optimization cannot be exploited; however, the lack of this

www.manaraa.com

98 MEMORY PERFORMANCE OF PROLOG ARCHlTECTURES

PROLOG
source

RAP compiler

RAP emulator

trace
file

multi-cache
simulator

Figure 3-12: RAP-Prolog Performance Measurement Methodology

optimization does not significantly affect the memory referencing behavior of the
program.

The Sderiv input datum is an irregular expression composed of summations
of irregular expressions. The summations are highly regular trees of additions,
and are nicely split by the first differentiation rule. The decomposition of the
irregular expressions represent a much finer grain size and higher
communication.

High-level characteristics of the Sderiv benchmark are presented in Table
3-15. The dynamic statistics were collected during a simulation of four
processing elements (PEs). Instruction references were not measured; however,
they have approximately the same high-level characteristics as in the W AM
(Table 3-3).

Table 3-16 compares the number of data words referenced by Sderiv

www.manaraa.com

PROLOG ARCHITECTURE MEASUREMENTS 99

:- mode d(g, g, i).

sderiv :- expr(X) , d(X, x, Y).

d(A+B+C+D,X,DA+DB+DC+DD) :- !,
(true I d(A,X,DA) , d(B,X,DB) , d(C,X,DC) , d(D,X,DD».

d(A~B+C~D,X,DA~B+A~DB+DC*D+C*DD) :- !,
(true I d(A,X,DA) , d(B,X,DB) , d(C,X,DC) , d(D,X,DD».

d(U+V, X, DU+DV) :-!, (true d(U,X,DU)
d(U-V,X,DU-DV) :-!, (true d(U,X,DU)
d (U*v, x, DU*V+U*DV) : - ! , (true d (U, x, DU)
d(U/V,X, (DU*V-U~DV)/VA2) :-!, (true d(U,X,DU)
d(UAN,X, DU*N*UAN1) :-!,integer(N), Nl is

d(-U,X,-DU)
d(exp(U),X,exp(U)*DU)
d(log(U),X,DU/U)
d(X,X,l) :-!.
d(C,X,O).

d(U,X,DU) .
: - ! , d (U, X, DU) .
: - ! , d (U, X, DU) .
:-!,d(U,X,DU) .

value«(3*x + (4*exp(xA3)*log(xA2» -2) /
(-(3*x) + S/(exp(xA4)+2»».

expr(E+E-E~E/E*E/E):
value (F) ,
E = F+F+F+F+F+F+F+F.

, d(V,X,DV».
, d(V,X,DV».
, d(V,X,DV».
, d(V,X,DV».
N-l,

Figure 3·13: RAP-Prolog Program Example: Sderiv

executing sequentially in the W AM and on PW AM multiprocessors with one to
eight PEs. For PW AM, the number of process management references increases
steadily for Sderiv. On eight PEs, the parallelism exploited is so fine grained that
management overheads increase dramatically - data references increase by 8%.
This is mostly due to busy waiting. The PW AM emulator is organized to force
quickly succeeding parallel processes within a CGE to wait for slower processes
to complete. This busy waiting entails continuously reading a process
management flag to determine if all sibling processes have completed. The
memory bandwidth required by these extra reads can be almost completely
removed with local memories. In fact, the busy wait loops generate atypical
reference patterns because the references display 100% temporal locality, which
skews the overall measure of program locality. Discounting busy wait
references, the low number of extra references in comparison to the W AM is

www.manaraa.com

100 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

Program
static
PW AM instructions
dynamic
procedure invocations
PW AM instructions
instructions/invocation
data references
data ref/instr

Sderiv

324

1494
34675

23.2
87890

2.53

Table 3-15: Summary ofPW AM Sderiv Benchmark on Four PEs

Sderiv PEs data ref
W AM __ ----=-1 __ --'7c...:4~35"'"""8
PWAM 1 85709

2 86180
4 87890
8 94922

Table 3-16: PW AM Sderiv Data Bandwidth Efficiency

area read % write % total %
cp 19062 49.3 19566 50.7 38628 43.9
env 10606 40.1 15866 59.9 26472 30.1
heap 8912 46.7 10182 50.3 19094 21.7
trail 0 0.0 1514 100.0 1514 1.7
pdl 0 0.0 0 0.0 0 0.0
pf-local 24 40.0 36 60.0 60 0.1
pf-slot 24 51.1 23 48.9 47 0.1
pf-lock 1391 92.2 118 7.8 1509 1.7
marker 46 20.0 184 80.0 230 0.3
goal 168 50.0 168 50.0 336 0.4
message Q 0.0 Q 0.0 Q 0.0
total 40233 45.8 47657 54.2 87890 100.0

Table 3-17: PW AM Sderiv Data Referencing Characteristics on Four PEs

www.manaraa.com

PROLOG ARCHITECTURE MEASUREMENTS 101

consistent with the results given by Hermenegildo [35] and helps confirm the
efficiency of the PW AM model.

Table 3-17 shows the Sderiv memory data reference statistics broken down
by area and by type. This data was collected for a simulation of four PEs.
Although each process references its own storage areas, the separate areas are
lumped together in Table 3-17. The PW AM-specific storage areas include the
Parcall Frames and Markers (marker) on the stack, Goal Frames in the Goal
Stack (goal), and Message Buffer (message) (refer to Table 2-7). References to
Parcall Frames are broken down into the local area (pf-Iocal), and the global area.
The global area is further split into the Process Slots (pf-slot) and the two
semaphores (pf-Iock). The profile is similar to the W AM benchmarks (Table
3-5). Less than 3% of the memory references are PW AM overheads, and most of
these are lock reads during busy waiting.

3.6. Summary

In this chapter, an empirical methodology is described for measuring the
dynamic memory-referencing characteristics of Prolog programs. This
methodology consists of a Prolog-to-Lcode compiler, Lcode assembler, Lcode
instruction-set emulator, and various memory simulators. A set of four Prolog
benchmarks (CHAT, PLM, QC1, and ILl) and one RAP-Prolog benchmark
(Sderiv) are described. High-level memory-referencing characteristics of the
benchmarks, measured with the tools described, are given. Characteristics of the
W AM, Prolog ClFs, and PW AM architectures are presented.

The W AM statistics indicate that even for well-written determinant Prolog
programs, shallow backtracking dominates the Prolog data bandwidth
requirement. The referencing localities of objects on the stack and heap roughly
indicate the relative merits of different types of local data memories for reducing
the memory bandwidth requirement. 95% of all references to choice points land
within the top 21 words of the W AM stack. 95% of all references to
environments land within the top 40 words of the stack. It is shown that in a
split-stack architecture, 95% of all environment references land within the top 18
words of the stack. For the heap, even the top 1200 words of the heap do not
always capture 95% of all heap references. From these high-level statistics,
choice point buffers, stack buffers, split-stack buffers, and general data caches
appear to be viable alternatives for reducing memory traffic. Low-level memory
referencing measurements of the benchmarks executing on these local data
memories are presented in the following chapters.

www.manaraa.com

102 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

Several alternative W AM instruction encodings are considered in this
chapter. Measurements are presented indicating that byte encoding generates
about 63% of the instruction traffic of word encoding, all other encoding
attributes being equal. Other encoding attributes, such as branch offset size and
bit encoding, do not reduce the instruction bandwidth requirement as
significantly.

High-level memory-referencing statistics of three (naive, traditional, and
register-based) Prolog ClFs are presented. The register-based CIF generates as
much as 330% more data traffic than the traditional CIF, yet only as much as
19% more instruction traffic, indicating that the unlimited stack buffer
assumptions in the traditional CIF far outweigh its instruction encoding
advantages. Compared to the naive model, the register-based CIF reduces data
traffic by about 14%, whereas the traditional CIF achieves a 79% reduction in
traffic. Measurements of more detailed CIF attributes are presented for the
register-based CIF, which cOITesponds most closely to the W AM. Among these
attributes, ideal indexing offers the greatest traffic reduction - single argument
(W AM) indexing generates 25%-50% more memory traffic than ideal (CIF)
indexing. This result indicates that efforts to improve the W AM and its related
compiler technology should concentrate primarily on indexing. As is discussed
in the next chapter, poor indexing can alternatively be improved with hardware,
in the form of local memories.

The RAP-Prolog memory-referencing characteristics of the Sderiv
benchmark are also presented in this chapter. On a single processor, PW AM
generates about 15% more memory references than the WAM. This overhead
increases to 28% for eight processors (where most of the overhead is due to busy
waiting). These high-level statistics indicate that PW AM does not sacrifice
much of the W AM's efficiency to achieve parallelism. Further measurements of
Sderiv presented in Chapter 5 explore the PW AM overheads in more detail.

www.manaraa.com

4 Uniprocessor Memory Organizations

In this chapter, two-level memory hierarchies are defined and measurements
are presented and analyzed for sequential Prolog architectures. The first level
consists of a local memory. The second level consists of an interleaved main
memory. Both traditional local memory models, as well as models suited
specifically to the Prolog architectures previously introduced, are examined.
Queueing models are used to determine the main memory interleaving required
to support the local memory configurations. In the next chapter, these memory
hierarchy designs are extended to multiprocessor systems.

Local data memories include a choice point buffer, stack buffer, environment
stack buffer, copyback cache, and "smart" cache. Local instruction memories
include an instruction cache and look-ahead instruction buffer. In addition,
combined instruction/data copyback cache measurements are presented. Local
memory configurations are presented, consisting of a combination of these
memories, ranging from low costilow performance to high costlhigh performance
systems. Local memory performance measurements are given in terms of hit
ratio, traffic ratio, copyback ratio, and dirty line ratio. These measures allow
comparison between the local memory designs and supply the main memory
queueing models with critical design parameters. It is shown that small local
buffers perform quite well - a 12 word single choice point buffer reduces the
memory data bandwidth requirement by 38%. Larger, sophisticated local
memories perform significantly better - a 1024 word "smart" data cache
reduces the memory data bandwidth requirement by 93%.

The second-level main memory and memory bus are modeled, with
asymptotic M/G/1 queueing models, for typical system configurations: a
combined liD cache, and a look-ahead instruction buffer + stack buffer
configuration. The measurements presented indicate that although the stack
buffer configuration can make more efficient use of an interleaved main memory
than can the cache, the cache performs better because it captures heap references
and code loops, which the stack and instruction buffers cannot capture.

www.manaraa.com

104 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

Both uniprocessor and shared memory multiprocessor architectures are
studied in this book. For both of these host organizations, motivations are now
given for reducing, with local memory, the memory bandwidth requirement and
the effective memory latency. From the previous chapter, the benchmarks
studied have an average number of 3.0 words referenced per instruction
executed. The average number of instructions executed per "logical inference" is
15.0. Therefore to attain one MLIPS (millions of logical inferences per second)
average performance, or 15 MIPS (millions of W AM instructions per second),
180 Mbytes/sec sustainable memory bandwidth is required.

Even if a shared memory multiprocessor is used to deliver this performance,
the bandwidth requirement must still be satisfied by a single (possibly
interleaved) main memory if no local memory exists. In addition,
multiprocessors have communication overheads which imply an even greater
bandwidth requirement. A main memory suitable for symbolic processing
applications must be large and therefore cost and packaging constraints typically
prevent it from having a fast access time. A suitably interleaved memory, for
instance, may achieve the bandwidth requirement under ideal conditions. In
general, however, contention between requests to the same main memory module
will reduce the deliverable bandwidth. Considering single bus interconnections,
current technology buses can deliver only a fraction of the required bandwidth
(e.g., the current Sequent can deliver 32 Mbytes/sec peak bandwidth). Emerging
technology buses, however, may be able to deliver up to 200 Mbytes/sec peak
bandwidth [5] (sustained bandwidth will be lower). These considerations
indicate that the target of one MLIPS will tax the bandwidth capabilities of single
memory systems. The introduction of local memory can reduce the bandwidth
requirement, allowing the processor(s) to operate closer to their peak
performances.

More important than the reduction in bandwidth requirement is the necessity
to reduce the memory latency, i.e., the delay in servicing a given memory
request. With only a single memory, each request requires the full access time of
the memory. As previously argued, large memory systems have slow access
times, and therefore long latencies. From the results of the previous chapter,
about 40% of all memory references generated by the W AM are data reads.
Assuming that the processor must stall until a data read is serviced, and
assuming that the memory request rate of the processor is much higher than the
service rate of the memory, only about 60% of the target performance can be
achieved. Under the more optimistic assumption that a processor can sustain up
to two data reads on average before stalling, approximately 80% of the target
performance can be achieved, etc. The introduction of local memory can reduce
the effective memory latency, thereby allowing the processor(s) to operate closer
to their peak performances.

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS lOS

CPU R local Rs _ main
memory memory

Figure 4·1: Uniprocessor Memory Model

4.1. Memory Model

The memory model, illustrated in Figure 4-1, consists of a single processing
unit making requests to a two-level memory hierarchy. The closest level to the
CPU is a local memory of limited capacity. The second level in the model is a
slower main memory of unlimited capacity. The local memories examined are
queues, buffers, and caches. Certain local memories capture only select types of
references, accessing others directly from main memory. These memories are
managed with a copyback policy: write references contained in the local memory
are serviced there without immediately updating main memory. Main memory is
later updated when the modified local memory location (called a dirty location)
is chosen for replacement.

In Section 5.3, local memories managed with a write-through policy are
examined. Write references are issued to both the local and main memories, thus
keeping the two consistent. In addition, a hybrid policy of copyback and write
through for different types of requests is examined. As is discussed in Section
5.2 these local memories solve coherency problems inherent to multiprocessors.

For a given program, the processor issues R requests or references, broken
down into reads, Rr, and writes, Rw' Requests are in units of words. The
requests can also be broken down into hits, Rh, and misses, Rm, indicating
whether the request is serviced from local or main memory:

R = Rr + Rw = Rh + Rm'

www.manaraa.com

106 MEMORY PERFORMANCE OF PROLOG ARCHITECl'URES

In addition, read request misses, Rr,m' write request hits, Rw,h' etc., are defined.
The miss ratio, mr, is the fraction of requests that cannot be serviced from local
memory. Assuming a write-allocation policy, where write misses are loaded
into the local memory,

mr=Rm/R.

With a no-write-allocation policy, write misses do not contribute to the miss
ratio,

mr = Rr,m I Rr·
Hit ratio is an alternative measure to miss ratio,

hr = 1 - mr.

For a copyback local memory, the main memory traffic, Rs' is the requests made
to main memory,

Rs = (Rm + C)B,

where C is the number of copyback requests and B is the size of blocks (in
words) transferred between main and local memory. For a write-through local
memory, the main memory traffic is

Rs = Rr,mB + Rw'
This is easily generalized for a hybrid local memory that copies back certain
request types and writes-through others.

The traffic ratio, tr, is the ratio of main memory traffic to local memory
traffic. An alternative definition is the ratio of the number of references serviced
by the main memory with local memory, to the number of references serviced by
the main memory without local memory.

tr=Rs/R.

The copyback ratio, cr, is the ratio of the copyback traffic (to main memory), to
the write traffic (to local memory),

cr = C*B IRw'

The dirty line ratio, dr, is the fraction of local memory replacements which
require copyback, i.e., the ratio of copybacks to misses,

dr = C/Rm.

By definition, hit and dirty line ratios are less than one, whereas traffic and
copyback ratios can be greater than one. The latter can happen if the replacement
granularity (a block) is greater than one word (the reference size). Large blocks
increase hit ratio by virtue of prefetching sequential locations, i.e., exploiting
spatial locality. A well-balanced model must have both high hit ratio and low
traffic ratio (significantly less than one if possible). The copyback ratio indicates
the efficiency of the copyback policy. A low (less than one) copyback policy is

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS 107

desirable, although it is not critical if the traffic ratio is low. A high copyback
ratio indicates that a write-through policy is possibly better. A low dirty line
ratio is desirable, indicating that not much copyback traffic is necessary.

In the remainder of this chapter, measurements of these statistics are
presented for various local memory models. The performance of configured
models, e.g., a choice point buffer combined with a instruction buffer, are
calculated by combining the statistics of the singular models in the following
manner. Consider partitioning all memory references into an exhaustive and
mutually exclusive set of reference types. A reference type, in contrast to a data
type, corresponds to a storage area, e.g., the heap, trail, etc. When combining
local memory models which capture certain memory types, the following
relations hold:

hr = lhrlr(j)

tr = ltrjPr(j)
where Pr(j) is the fraction of references of type j. A reference type i that is not
captured by any local memory in the configuration, has hri=O and tri=1.

These statistics are then used to derive the main memory interleaving factor
necessary to increase memory bandwidth. An interleaved memory consists of m
modules, where each memory module can be accessed independently and
multiple requests to the same module are queued. For a sequential processor, as
the number of modules is increased, a local memory with a larger block size, B,
can be accommodated. This can increase local memory performance. For a
multiprocessor, as the number of modules is increased, contention at the modules
between different processor requests is reduced, thus increasing performance.

4.2. Data Referencing

4.2.1. Choice Point Buffer

A choice point buffer offers maximum data bandwidth reduction at minimal
cost. An example of a choice point buffer design is that of the PLM [21]. A
buffer holding the current choice point is simple and directly reduces the primary
data bandwidth requirement caused by shallow backtracking. In the W AM,
choice point references are always made to the current choice point defined by B.

This facilitates designing a simple yet efficient buffer as illustrated in Figure 4-2.

www.manaraa.com

108

D valid
0

m

MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

D valid

! choice
point

~
1 word

D valid

partial
choice
point

Figure 4-2: Choice Point Buffer Model

Figure 4-2 shows the three possible states of the buffer: invalid, valid, and
partially valid. The buffer has a valid bit indicating whether it contains a choice
point or partial choice point. m, ranging from zero to BujferSize, indicates the
number of valid entries if the valid bit is set. Instructions which create choice
points copyback the valid portion of the buffer to memory and load the new
choice point. Instructions which reset the current choice point simply invalidate
the buffer.

The choice point buffer management scheme is summarized below (refer to
Figure Col in Appendix C for the detailed algorithm). If the buffer is invalid,
choice point references are serviced from memory. If the buffer is valid, a choice
point reference is not guaranteed to be contained by the buffer. A reference to a
choice point larger than the buffer size may require service from memory. It is
assumed that when referencing large choice points, the host (by either microcode
or reduced native code) will access the valid portion (up to BuJferSize) from the
buffer and the invalid portion directly from main memory. This obviates the
need for runtime checks.

The following variations of this management policy were examined:

• Use dirty bits to reduce memory traffic - A dirty bit is a flag
associated with each buffer entry indicating if that entry holds a
value not updated in main memory. This policy does not
significantly affect traffic or copy back ratios because choice points
are only allocated in the buffer when they are created.

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS

• Always load the current choice point into the buffer - This policy
ensures that all instructions which modify B also load the new
current choice point into the buffer. Higher hit ratios are attained at
the cost of increased traffic ratios. Even with dirty bits, the buffer's
traffic ratios are over three times that of the former policy.

109

Figure 4-3 shows the choice point buffer performance measurements. These
statistics account for choice point references only, i.e., the only memory requests
counted are choice point requests. In this and all subsequent memory
simulations, "cold start" measurements are presented. Hit and traffic ratios level
off at a buffer size of 12 words. An eight word buffer, which contains at most
one saved argument, achieves a hit ratio of 0.70. A 12 word buffer increases the
hit ratio to 0.84 and reduces the traffic ratio to 0.28. QC1 exhibits significantly
higher hit ratios and lower traffic and copyback ratios than the other programs.
CHAT exhibits significantly lower hit ratios and higher traffic and copyback
ratios than the other programs. This behavior can be attributed to CHAT's
highly nondeterminate style and QC1 's highly determinate style.

The choice point buffer has two additional advantages:
• Simplicity of design and small size map well onto VLSI.

• The buffer can be distributed over the state and argument registers,
as shadow registers. This reduces the time required to read and
write a choice point. This idea was first reported in Tick [82] and
implemented in the Pegasus Prolog processor [71].

4.2.2. Stack Buffer

An alternative to the choice point buffer is a more ambitious buffer which
captures portion(s) of the stack. A reasonable design is a directly addressable
wrap-around buffer containing the top portion of the stack. The advantage of a
stack buffer over a choice point buffer is that the stack buffer captures both
environment and choice point references. In addition, the stack buffer can
capture deep choice points.

Examples of stack buffer designs include the Symbolics 3600 stack buffer
[80], DCA contour buffers [2], and the C Machine stack cache [19]. The

Symbolics 3600 stack buffer is composed of four 256 word pages. Management
is based on pages - upon overflow, a page is spilled and upon underflow, a page
is restored. Alpert's contour buffer holds variable sized contours, similar to
activation records. Management is based on contours - upon overflow, the
oldest contour is spilled and upon underflow, the topmost contour is restored.
Ditzel's stack cache is similar to the DCA contour buffer.

The Prolog stack buffer model is illustrated in Figure 4-4. The stack buffer

www.manaraa.com

110 MEMORY PERFORMANCE OF PROLOG ARCHrrECTURES

1.0

0.9

oi!J- CHAT
.2 0.8 PLM
'tij - QC1 ...
.t:: 0.7 III .c: mean

0.6

0.5
7 8 9 10 11 12 13 14 15 16

buffer size in words

0.6

~ 0.5 -...
0 0.4

~ fij
"- 0.3
(.)

~ ~ 0.2-.
0.1

0.0
7 8 9 10 11 12 13 14 15 16 words

0.5

0.4
.2
N 0.3
~

~
J:J 0.2 >. c.
8 0.1

0.0
7 8 9 10 11 12 13 14 15 16 words

Figure 4·3: Choice Point Buffer Performance Measurements

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS

o valid

z
EN"

A ~~----------4

..
1 word

dirty
bits

A

Z

o valid

" '<'

110

~

~.

'>I," .Il.':.'"

Figure 4-4: Stack Buffer Model: Object Allocation

dirty
bits

111

management scheme is summarized below (refer to Figure C-2 in Appendix C
for the detailed algorithm). Assume that the stack grows upward in addresses. In
Figure 4-4, physical buffer addresses increase downward. A points to the highest
valid stack address in the buffer. Z points to the lowest valid stack address in the
buffer. E and B point to the current environment and choice point, respectively.
TOS is the top of stack pointer.

The buffer is managed by instructions which allocate and deallocate stack
objects (environments and choice points). Instructions which create an object
load the new object into the stack buffer if the object is not larger than the buffer.
If the object fits in the buffer, the appropriate portion of the buffer is copied back
to make room for the new object. Dirty bits are used to minimize the number of
buffer entries requiring copyback. If the new object does not fit in the buffer, the
entire buffer is copied back and invalidated.

Instructions which deallocate objects reset TOS to the new top of stack. If
Z>TOS, the buffer is invalidated. If Z<TOS, the buffer remains valid. No
copyback is necessary in these situations because objects more recent than the
new top of stack are not needed.

If the buffer is invalid, stack references are serviced from memory. If the
buffer is valid, stack references are not guaranteed to be contained by the buffer.
For instance, references to a deep environment may not be in a valid buffer.
Thus the model requires runtime address comparison to detect a buffer hit. The

www.manaraa.com

112 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

model can be extended, in obvious ways, to avoid runtime comparisons in certain
instances.

An alternative policy is to always prefetch the top portion of the stack into
the buffer, thus avoiding the need for runtime comparisons. This alternative
policy is taken in most stack buffers designed for procedural languages, e.g.,
DCA contour buffers. The "regular" stack growth of procedural languages
allows these buffers to be restored when a buffer underflow occurs, without
generating excessive memory traffic. Prolog stack behavior is more irregular
because of choice points protecting deep environments, and failure and cut
releasing large portions of the stack. This irregularity coupled with a policy of
buffer restoration upon underflow is expected to generate excessive memory
traffic. Therefore the alternative policy was not measured.

Figure 4-5 shows the stack buffer performance measurements. These
statistics account for stack references only. Notice that CHAT exhibits a lower
hit ratio and higher traffic and copy back ratios than the other benchmarks,
indicating less locality. In fact, CHAT significantly affects the mean ratios. The
statistics indicate that a stack buffer of 64 words, with a hit ratio of 0.95 and
traffic ratio of 0.08, is sufficient to capture most locality in the benchmarks.
Figure 4-6 shows the effect of the dirty bits on reducing memory traffic. The
traffic is reduced in the range of 27% to 42%, for buffer sizes 128 and 16 words
respectively.

Note that both the stack buffer and the choice point buffer models are
organized around one word entries. This assumption may not be realistic for a
system with a wider bus (i.e., a wider physical memory word). Realistic local
memories are organized around blocks or lines of multiple physical words. The
advantage of blocks is that block access time can be reduced by pipelining
memory module accesses in an interleaved memory. The disadvantage of blocks
is that excess traffic is generated whenever the entire block need not be
transferred (e.g., if a dirty block to be copied back is not entirely dirty). Thus the
buffer statistics presented here may be optimistic in terms of raw traffic.
However, estimates of burst mode traffic may be pessimistic.

Figure 4-7 shows the choice point reference hit ratios for the stack buffers
and choice point buffers. The stack buffer captures a significant portion of deep
choice point referencing that a single choice point buffer cannot capture. Recall,
however, that the choice point buffer, because of its simplicity, does not require
runtime address comparisons to determine a hit, as does the stack buffer. In
addition, a choice point buffer can be distributed in implementation (as shadow
registers), whereas the stack buffer cannot.

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS 113

1.0

0.9

0.8 -EI- CHAT
0 PLM 16 - OC1 '" := 0.7 ... III .s::. mean

0.6

0.5
16 32 64 128 256

buffer size in words

0.6

0.5

0
0.4

~
0

0.3

~ 0.2

0.1

0.0
16 32 64 128 256 words

0.40

0.30
0

N
.:.:: 0.20 lij
.c
>-
Co

8 0.10

0.00
16 32 64 128 256 y.()rds

Figure 4-5: Stack Buffer Performance Measurements

www.manaraa.com

114

0

~
(.)

~

~

0
.~

.....
:E

1.00

0.80

0.60

0.40

0.20

0.00

MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

16 32 64 128 256
buffer size in words

-ill- dirty bits
.... no dirty bits

Figure 4·6: Effect of Dirty Bits on Stack Buffer Traffic Ratio

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

8 16 32 64 128 256
buffer size in words

-iii- cp buffer
... stack buffer

Figure 4·7: Choice Point Reference Hit Ratios

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS 115

4.2.3. Environment Stack Buffer

The split-stack architecture, introduced in Section 2.2.4, increases the
locality of environment references. A reduction in the memory bandwidth
requirement was anticipated as a result of increased environment locality.
Environment bandwidth reduction was measured by modeling an environment
stack (E-stack) buffer. The E-stack buffer model is similar to the stack buffer
illustrated in Figure 4-4, except that only environments reside within the buffer.

The E-stack buffer management scheme is summarized below (refer to
Figure C-4 in Appendix C for the detailed algorithm. Definitions of set(n) and
copyback(d) are given in Figure C-2). Assume that E points to the current
environment, TOS points to the top of the E-stack, and Z points to the lowest E
stack address valid in the buffer.

As with the stack buffer model, the E-stack buffer is managed by instructions
which allocate and deallocate environments and choice points. A newly created
environment is allocated in the buffer, possibly causing a copyback. Deallocated
objects, both environments and choice points, possibly cause the the top of stack
to be reset. If Z>TOS, the buffer is invalidated. If Z<TOS, the buffer remains
valid. No copyback is necessary in these situations because objects more recent
than the new top of stack are not needed. Alternative policies are to always
prefetch the top portion of the E-stack into the buffer or to always load the
current environment into the buffer. These approaches are expected to cause
excessive memory traffic and were not measured.

Figure 4-8 shows the E-stack buffer performance measurements. These
statistics account for environment references only. Figure 4-9 shows a
comparison of the single and split-stack model environment reference hit ratios.
A 32 word E-stack buffer and 64 word stack buffer give similar performance.
Choice point locality in the split-stack model is also increased. This effect is
immaterial, however, if a choice point buffer, which buffers only one choice
point, is used.

4.2.4. Copyback Cache

An alternative to the previously described local memories is a data cache,
which can capture all types of references, i.e., heap and trail references as well as
stack references. A cache, in contrast to the buffers previously described, is not
included in a conventional processor architecture. In other words, a cache
exploits locality without explicit knowledge of architecture. Whereas the buffers
are managed explicitly by instructions, matching expected referencing patterns to

www.manaraa.com

116 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

1.00

0.95

0.90
-& CHAT

0 0.85 PLM . ~ ... ClC1 - 0.80 III :e
0.75 mean

0.70

0.65
16 32 64 128 256

buffer size in words
0.50

0.40

0 0.30 'ia
C,)

:E 0.20 g
0.10

0.00
16 32 64 128 256 words

0.25

0.20
0

~ 0.15
~ g
..0 0.10 >-a.
0
C,)

0.05

0.00
16 32 64 128 256 words

Figure 4-8: Environment Stack Buffer Performance Measurements

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS 117

1.0

0.9

0
.~ 0.8
.....

-GI- split-stack
-+- single-stack

:E

0.7

0.6

16 32 64 128 256
buffer size in words

Figure 4-9: Comparison of Environment Reference Hit Ratios

program s0mantics, the cache is managed implicitly by replacing fixed sized
objects on a demand basis. In this section, a data cache model is described and
measurements are presented.

The cache model considered in this section is line (block) oriented, i.e., all
transfers to/from main memory are line transfers. A write-allocation policy is
used wherein both read and write misses cause fetching of the target. A
copyback or write-back policy is used wherein writes to the cache do not
immediately update main memory. Main memory is updated only upon cache
replacement. The cache is categorized by a number of blocks or lines of a given
size (in words). The cache is modeled as a fully associative memory, i.e., any
line within the cache can contain any line from main (or virtual) memory. A
perfect least recently used (LRU) replacement algorithm is used - the block
least recently referenced is replaced next. Dirty bits are used to minimize the
number of blocks requiring copyback.

An alternative cache model uses a write-through policy, where all writes are
issued to both the cache and main memory. The copyback policy is superior to
the write-through policy because the copy back policy reduces memory traffic
more effectively. This is especially important in Prolog, where the read to write
ratio is almost 1:1 (see Section 3.3.1). The write-through policy, however,
maintains a consistent main memory, whereas the copyback policy does not.
Variations of the write-through policy are studied in the next chapter because
these strategies facilitate solving the multiprocessor consistency problem.

www.manaraa.com

118 MEMORY PERFORMANCE OF PROLOG ARCHITECl'URES

Inaccuracies in the formulation of this simple cache model follow.
• replacement policy - Pure LRU is assumed. Inexpensive

implementations of other replacement algorithms closely
approximate pure LRU [79]. In certain circumstances, LRU may not
be the best replacement policy, e.g., random replacement may be
best for small I-caches [76]. In any case, replacement policy is a
minor parameter compared to cache size [76].

• mapping policy - Full associativity is assumed. Real
implementations use set associativity, restricting the number of
cache locations where a line can be placed. Smith [74] reports that
2-way set-associativity performs quite well, with performance
leveling off for 4-way set-associativity.

• traffic ratio - Traffic ratio, as defined in Section 4.1, treats a block
transfer as a number of B equal word transfers. This definition
ignores implementation possibilities wherein blocks are transferred
at rates Jaster than the sum oj the constituent words. This method of
burst mode transfer is possible with interleaved memory modules in
a pipelined fashion. Traffic ratio can be scaled to account for these
effects [38]. Instead, in later sections, queueing models are
developed incorporating burst mode effects. Unscaled traffic ratio
can be viewed as a conservative statistic to be used for comparison
of local memories.

• block/sub-block sizes - The simple allocation policy used here
requires transfer of an entire block on a cache miss. An alternative
policy transfers only a portion of a block, called a sub-block, while
allocating an entire block. This alternative policy reduces traffic and
cache map size, at the cost of increasing miss ratio. Miss ratio is
increased because spatial locality is no longer exploited. An optimal
trade-off between block and sub-block sizes can often be found [38].
Larger sub-blocks give optimum performance for scaled traffic, i.e.,
traffic accounting for burst mode transfers of blocks [38]. In the
main memory models of the next chapter, interleaving is assumed,
implying that the simplifying assumption used here (block size =
sub-block size) is reasonable.

• write-allocation policy - This policy refers to the fetching of the
target of a write miss into the cache. A no-write-allocation policy
consistently generates less memory traffic for small caches (64
words or less). Another method of reducing traffic in small caches is
the use of sub-block allocation, as previously described.

• cache size - Cache size, as defined here, is net size, i.e., "offered
data" size, discounting space required for addressing tags. To be
more accurate, especially for small caches and caches with small
lines, gross size should be calculated.

Figure 4-10 shows the data cache performance measurements. The
copyback cache simulator used to make these measurements is a translation of
the DELCACHE program written by D. Alpert [2]. Large caches and caches
with small block size satisfy the criteria of low traffic and copyback ratios.

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS 119

1.00

0.98

0.96

0 0.94
l~ - 2 word block 0.92
:E -+ 4 word block

0.90 8 word block

0.88

0.86

0.84

64 128 256 512 1024
cache size in words

1.2

1.0

0 0.8 iii ...
tJ 0.6

~ - 0.4

0.2

0.0

64 128 256 512 1024 words
1.00

0 0.80

i
~

~
0.60

.0
~ 0.40
8

0.20

0.00

64 128 256 512 1024 wolds

Figure 4-10: Data Ca~he Performance Measurements

www.manaraa.com

120 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

0.9

0 0.8

~ -a- 2 word block
(J)
c 4 word block

>. 8 word block
t 0.7
'6

0.6 +---....---.------,,....----r--.....,
64 128 256 512 1024

cache size in words

Figure 4·11: Data Cache Dirty Line Ratio

However, small block caches have low hit ratios. The best small cache is 32
blocks of two words each with a hit ratio of 0.84. The best medium cache is 32
blocks of four words each with a hit ratio of 0.94. The best large cache is 32
blocks of eight words each with a hit ratio of 0.97. The medium and large caches
retain similar traffic characteristics while improving hit ratio at the cost of
doubling cache size. The data cache simulations indicate that even small caches
deliver high performance. Heap and trail referencing exhibit more spatial
locality than may have been expected. When reading and writing structures on
the heap, referencing is sequential. Even nested structures are laid down in a
localized area. The trail is also read and written sequentially.

Figure 4·11 shows the dirty line ratios of the data caches. Recall that the
dirty line ratio is the ratio of replacements that require copyback (the replaced
line is dirty) to total number of replacements. Copyback ratio is the ratio of
writes issued by the cache to writes issued by the processor. In a pure copyback
cache, writes issued by the cache are the number of dirty lines copied· back,
scaled by the line size. The copyback ratio and dirty line ratio are therefore both
functions of the number of dirty lines replaced, called the dirty total. In the dirty
line ratio, the dirty total is inversely scaled by the number of misses. In the
copyback ratio, the dirty total is directly scaled by the line size. Removing the
scaling from the copyback ratio statistics (Figure 4·10) indicates that small line
sizes have the greatest dirty total. Thus the result shown in Figure 4-11, where
the dirty line ratio is inversely proportional to line size, is not surprising.

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS 121

Another unexpected result is that copyback ratios are inversely proportional
to cache size whereas dirty line ratios are directly proportional to cache size.
Dirty line ratio is directly proportional to dirty total and inversely proportional to
miss total. In the data cache, the number of misses (and the miss ratio) drops off
very fast as cache size increases, whereas the dirty total does not. As a result, the
dirty line ratio increases. This may be explained as many write hits in the cache
create many dirty lines, so that for the rare miss, replacement has a higher
probability of selecting a dirty line.

4.2.5. Smart Cache

In contrast to the traditional caches analyzed in the previous section, smart
caches are not ignorant of the instruction set architecture. A smart cache, as
defined here, avoids fetching or copying back lines that are not contained in the
current valid storage areas of the machine model, e.g., invalid portions of the
stack and heap. The PSI-II and Firefly machines both utilize one word line
caches with write-allocation. These caches implement the smart feature of
avoidance of fetching a write miss on the top of stack. Note that avoiding a stack
or heap fetch can be implemented by a host instruction (e.g., PSI-II's
wri te-stack operation [56]), whereas avoiding copyback requires a runtime
check by the cache.

Ross and Ramamohanarao [69] present and measure a similar management
strategy but at the next higher level: the transfer of pages between main memory
and disk. Their results show that for compiled Prolog programs, page traffic is
reduced by a factor of two over a conventional paging strategy. This suggests
that a similar cache line transfer management policy may be beneficial. The
smart cache strategy essentially introduces the management policies of the stack
buffer into the cache.

The potential bandwidth reduction offered by a smart cache is indicated by
the high-level statistics presented in Section 3.3.1. Almost all writes to the stack
occur at the top - the mean choice point write depth is 5.0 words and the mean
environment write depth is 9.7 words. In addition, certain benchmarks display
frequent writes to the top of heap - CHAT and ILl have a mean heap write
depth of 6.0 words. Therefore avoidance of fetching the line at the top of the
stack or heap, on a write miss, has the potential to significantly reduce memory
traffic.

A voidance of copying back dirty yet invalid portions of the stack appears
beneficial because on average, 40 words at the top of the stack are freed by each
choice point deallocation. Environment and heap deallocations are only half as
effective, freeing up 18 words on average.

www.manaraa.com

122 MEMORY PERFORMANCE OF PROLOG ARCHITECI'VRES

A smart copy back cache was simulated, based on the previous copyback
cache. The smart cache avoids fetching and copying back lines not contained
within the current valid storage boundaries, as defined by H, B and E. Figure
4-12 compares the smart cache and standard copyback cache data traffic ratios.
Both models give identical hit ratios. The percentage reduction in traffic ratio
afforded by the smart cache over the standard cache is given in the last graph in
Figure 4-12. As indicated, savings of 20% to 30% are expected.

Figure 4-13 shows the breakdown of references saved by the smart cache, for
each benchmark. For each benchmark, four percentages are given, adding up to
100% of the traffic savings: heap fetches (heap-f), heap copybacks (heap-cb),
stack fetches (stack-f), and stack copybacks (stack-cb). Removal of heap fetches
contributes the most to the traffic savings, with removal of stack copybacks
second. Note that removal of stack fetches consistently offers the least savings.

4.2.6. Comparison of Data Memories

In Section 4.2.1, choice point buffer performance statistics are presented
considering only choice point references. Similarly, the stack buffer and
environment buffer performance statistics presented concerned only reference
types that could be stored in the associated memory. These statistics show how
well the buffer exploits the locality of its associated data storage area. Total
memory system performance includes both local memory performance and the
performance of other reference types. In some cases, these other references
bypass the local memory, and total memory system performance is significantly
lower than the local memory performance. Figures 4-14 and 4-15 show the
statistics accounting for all data reference types (instruction reference types will
be included in Section 4.4). Included in these figures are 8 and 16 word choice
point buffers, 16 - 256 word stack buffers, 64 - 1024 word caches (with four
word line), and 16 - 256 environment stack buffers combined with a 16 word
choice point buffer.

The environment stack buffer + choice point buffer configuration statistics
are calculated from the individual simulator measurements, with the method
given in Section 4.1. Although the number of references to the stack and heap in
the W AM and split-stack architectures are different, the counts are approximately
the same (to within 2.5% worst case - see Section 3.4). The W AM counts are
used here.

With the equations of Section 4.1, a choice point buffer configured with an
environment buffer is modeled as:

hrcp+env = hrcpPcp + hrenvPenv

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS 123

1.2 smart data cache
1.0

0 0.8

~ ... 2 word block
()

0.6 ... 4 word block
!i: -8 word block e 0.4 -

0.2

0.0
64 128 256 512 1024 words

cache size in words

1.2 copyback data cache

1.0

.2 0.8

~
0.6 ()

g 0.4

0.2

0.0
64 128 256 512 1024 words

30 % reduction in data traffic

28

Q) 26

~
24 c:

~
Q) 22
Q.

20

18
64 128 256 512 1024 words

Figure 4·12: Comparison of Copyback and Smart Caches

www.manaraa.com

124 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

50
(/)

~
c: 40
~
Q)

~
"0

30 0 heap-f
Q) m heap-cb
iU ~ stack-f (/) 20
'0 r:a stack-cb

'E
Q) 10
~
Q)
Q.

0
CHAT PLM QC1 III

Figure 4-13: References Saved by Smart Cache

trcp+env = trcpPcp + trenyPenv + Prest·

Figures 4-14 and 4-15 indicate that this configuration does not perform as well as
a stack buffer of equivalent size. This result reconfirms the results of Figure 4-7,
showing that the stack buffer captures a significant portion of the choice point
references that a choice point buffer cannot - those below the top of stack (deep
backtracking). This result is unfortunate in the sense that a choice point buffer,
implemented as a set of shadow registers, is useful because it decreases the
execution time of choice point creation and failure, during shallow backtracking.
Yet a stack buffer produces significantly less memory traffic. The combination
of choice point buffer and stack buffer is untenable because of aliasing problems
- the same memory location may reside in both buffers. In fact, with the
proposed stack buffer management algorithm (Figure C-2 in Appendix C),
shallow choice points will always alias, thus defeating the advantage of shadow
registers. Related designs, however, such as a dual choice point buffer coupled
with an environment stack buffer, may approach the performance of the stack
buffer. The AM29000, a recent high-performance microprocessor with both 64
registers and a 128 word stack buffer [99], is an excellent host for implementing
such a configuration.

The data cache displays significantly higher hit ratios than the buffers (note
that both the copyback cache and "smart" cache have identical hit ratios). For
small caches, the hit ratio is paid for with a correspondingly high traffic ratio.

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZA TlONS 125

1.0

0.9

0.8

0.7
0

~ ... 0.6
.....
:.c 0.5

0.4

0.3

0.2

0.7

0.6

0.5

0

~ 0.4

()
0.3 =§

!=
0.2

0.1

0.0

--- .. .,.........-----

... ,.....
/~ 0 0

~

...,..e
I:T"

8 16 32 64 128 256 512 1024
memory size in words

-iT cp buffer

... stack buffer

... dcch 4w block
-0- cp+env buffer

Figure 4-14: Local Data Memories: Hit Ratio

8 16 32 64 128 256 512 1024
memory size in words

-Go ...
.....
-0-....

cp buffer
stack buffer
dcch 4w block
cp+env buffer
smart 4w blck

Figure 4-15: Local Data Memories: Traffic Ratio

www.manaraa.com

126 MEMORY PERFORMANCE OF PROLOG ARCHITECrURES

Caches of 64 words or less, however, do better without write-allocation, and so
these results are disputable. The stack buffer generates less traffic than the cache
for sizes of about 200 words and less; however, the stack buffer's advantage over
the smart cache is for sizes of about 130 words and less. Above these thresholds,
the caches are superior, although hardware cost should also be considered -
generally, cache hardware is more costly than stack buffer hardware in terms of
access time and number of gates.

The memories compared fall into three ranges of performance and cost,
where buffer size in words is a simple approximation to cost. For low cost, 16
words or less, a choice point buffer implemented as shadow registers has the best
performance. For medium cost, 32 - 128 words, the stack buffer is best. For
high cost, greater than 130 and 200 words, the smart and copyback caches
respectively are best.

The data cache performance for the W AM is now compared to similar local
memories for procedural language architectures. Because numerous studies have
been made of the memory characteristics of procedural languages, and this book
is one of the first studies of Prolog memory characteristics, it is helpful to the
intuition to understand their relationship. Mulder [55] measured the data
memory performance of typical Pascal programs. Only traffic ratio, the most
significant statistic, is compared here. Figure 4-16 shows the traffic ratios of two
and four word line caches for Pascal and Prolog. The Pascal benchmarks
generated significantly lower traffic ratios. For the lowest traffic measured, that
of 1024 word caches with two word lines, the Pascal traffic ratio is 0.031,33% of
0.094 for Prolog. For four word lines, the Pascal traffic ratio is 0.049, 50% of
0.10 for Prolog. These results indicate that the Pascal working set is smaller and
locality is higher. The Prolog storage model is more complex than the Pascal
storage model, entailing a heap, stack and trail. In addition, the heap and stack
can grow large (see Table 3-4). Even with garbage collection, the Prolog storage
areas will grow erratically, still giving a larger working set than Pascal.

4.3. Instruction Referencing

Local memory buffers capturing instruction references are introduced in this
section. A look-ahead instruction buffer, instruction cache, and combined
instructiOn/data (UD) cache are described and measurements are presented. The
functions of an instruction buffer and cache are complementary. An instruction
buffer prefetches the instruction stream, attempting to supply the CPU with a

www.manaraa.com

UNIPROCESSOR MEMORY ORGAN[ZA TIONS 127

0.7

0.6

0.5

.2 0.4 ~ 2w Prolog
1!1 4w Prolog
(,)

0.3 2w Pascal :=
~ 4w Pascal

0.2

0.1

0.0
64 128 256 512 1024

cache size in words

Figure 4-16: Pascal and Prolog Copyback Data Cache Measurements

constant supply of instructions. An instruction cache reduces the effective access
time of instruction references and prefetches instructions by block. Often a
simple instruction buffer that cannot capture loops is configured with an
instruction cache, or IID cache, which does.

All local instruction memory performance measurements presented in this
book are based on the most realistic, fixed-size byte-encoded formats defined in
Section 3.3.2. The Lcode emulator, however, executes loosely encoded
instructions, most of which are either one or two words in length. Although this
facilitates fast emulation, it makes accurate instruction trace production difficult
for other encoding schemes. There are two reasons for this. First, program size
varies with encoding scheme, therefore branch target distance varies. Second,
individual instruction sizes vary with encoding scheme. A mapping is made
from Lcode addresses to byte-encoded instruction addresses, which solves the

www.manaraa.com

128 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

above problems, while generating the instruction trace file. 10

4.3.1. Instruction Buffer

The instruction buffer (I-buffer) modeled captures sequential instructions.
The instruction stream is prefetched to guarantee that a program without
branches will never miss in the buffer. Branches cause the buffer to be
invalidated and a new buffer full of instructions to be fetched. This model is
sufficient to approximate hit and traffic ratios. The problem is that a sequence of
simple instructions may empty the buffer faster than prefetching can keep it
filled. See Rau [65] for a more complete model which can measure this effect.
This problem is assumed to be minor here because the W AM is a high-level
instruction set that requires significantly more time to execute most instructions
than a conventional architecture.

The degree of prefetching, d, is defined as the number of bytes prefetched
when a reference misses in the buffer (d bytes beyond the missed reference
itself). Each decoded instruction prefetches a number of bytes equal to the size
of that instruction. Therefore the model retains d bytes of unseen instructions in
the buffer at all times. In other words, the model simulates buffers of size d. As
d is varied, the hit ratio remains constant, limited only by the number of branches
in the instruction stream. Lcode branches occur after instructions such as call
and try. Instructions between branches are called runs. Run length
distributions (in words) for the benchmarks are shown in Figure 4-17. These
distributions assume a byte-encoded instruction set. The mean run length is 17
bytes and the 95% quantile is 42 bytes. (A word encoded instruction set has a
mean run length of 6 words and a 95% quantile of 16 words). Given the simple
run length distribution, it doesn't pay to make d significantly greater than the
mean run length.

ID-rhe mapping is approximated in the following manner. A psuedo program-counter, Ph, is
used to track the Lcode program-counter, P. For sequential execution, both P and Ph are
incremented by the instruction size (in bytes). For branches, however, P = A and Ph =
k* (A - codebot), where k<l is the ratio of byte-encoded program size to Lcode program
size and codebot is the base address of the program. This mapping has the advantage that
each domain maps into a single range. In addition, sequential instruction addresses are
accurate. The mapping has the disadvantage that branch targets are inaccurate because of the
inaccuracy of scaling. This inaccuracy slightly perturbs cache performance statistics because
determining whether a target instruction is in the cache is dependent on where the branch is
located. This perturbation is assumed to be minor because recursive loops usually branch from
a fixed location, thus accurately branch to the same target.

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS

0.20

0.16

0.12

0.08

0.04

0.00

0.20

0.16

0.12

0.08

0.04

0.00

• ...

1111

II. • .L --L .. __
I
10 20 30 40

.. 1.1_.1 ____

129

CHAT

_ ...
50 60 70

PLM

50 60 70

0.20 -:r-------------------a-C-1-
0.16 -:f---------------------=.::;..;..-
0.12 -31-----------------------
0.08 + --11--------------------
0.04 -:.--;_tt-.....-:rlt--;-~::__-_tl_----------

0.00 J.l1I..J .. ~-.,.a.....j u,-.........IL,_.-........ 't_--L....r--

0.20

0.16

0.12

0.08

0.04

0.00

0.20

0.16

0.12

0.08

0.04

0.00

20 40 50 60 70

III

I I
JIL

I
10 20 30 40 50 60 70

mean

I I I I

10 30 40 50 60 70

Figure 4-17: Instruction Run Length Distribution (bytes)

www.manaraa.com

130 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

The mean run length of 17 bytes for Prolog programs, with an average
instruction size of 2.6 bytes (see Section 3.3.2), implies 6.5 instructions per run.
To illustrate the high-level nature of the W AM instruction set, consider a
comparison with the IBMl370. Huck [39] measured a mean run length of 16.9
instructions for IBM/370 FORTRAN programs - over twice that of the W AM.

In the instruction buffer model, hit ratio is not dependent on buffer size
(branch targets contained in the buffer are not detected). Since traffic ratios
increase with d, it would appear that the smallest buffer size (minimal d) of four
bytes (approximately maximum instruction size) is best, but this is not always the
case. As mentioned previously, hit ratios for small buffers can be inaccurate
because certain factors, such as instruction execution time, are not taken into
account.

The mean hit ratio for the benchmarks is 0.82, with almost no variance (for
the word encoded instruction set the mean hit ratio is 0.74). This result can be
verified using an analytical approximation of hit ratio, (r-i)/r = 0.85, where the
mean instruction length, i, is 2.6 bytes and the mean run length, r, is 17 bytes.
This statistic represents the branch frequency as the ratio of sequential instruction
bytes to total instruction bytes referenced.

Figure 4-18 summarizes instruction buffer traffic ratios. Traffic ratio here is
defined as the number of bytes fetched by the buffer divided by the number of
bytes in the instruction stream. A system where memory transactions occur in
units of buswidths (Le., physical words) may be forced to move more bytes than
indicated in this definition of traffic ratio. The traffic ratio represents a best case
estimate and other systems with physical words larger than a byte will likely
have higher traffic ratios.

The instruction buffer cannot have a traffic ratio of less than one because
branch targets contained in the buffer are not detected. Because of the
inaccuracy of hit ratios for small buffer sizes, the 12 byte buffer with traffic ratio
of 1.8 is chosen for configuring data and instruction memories in Section 4.4.

4.3.2. Instruction Caches

The cache simulator models a cache with multiple word lines with a CPU
issuing word requests. Such a model is tuned for data references, each a word in
size; however, byte-encoded instructions consist of a variable number of bytes.
The emulator rounds instruction byte addresses into word addresses during trace
production. For example, a two byte instruction straddling a word boundary
causes two word references in the trace. This method of trace production allows
the use of the standard copyback cache simulator (Section 4.2.4) to colIect

www.manaraa.com

tlNlPROCJ!'SSOR MEMORY ORGANIZATIONS 131

2.6

2.4

2.2
0 • chat

~ 2.0
to)

IE
~ 1.8 -

... plm .. qc1 ... iii mean

1.6

1.4
4 8 12 16 20

buffer size in bytes

Figure 4-18: Instruction Buffer Traffic Ratios

instruction referencing statistics. With this method, however, hit and traffic ratio
statistics must be carefully interpreted, as described below.

In the system without a cache, the assumption is made that instructions are
fetched independently with no buffering. For example, a word is fetched for a
byte instruction, and extra bytes are ignored. Since there are no instruction
writes, there is neither copyback nor write-through in an instruction cache.
Therefore traffic ratio is

tr = Rm*B I R,

where, using the notation of Section 4.1, R is the number of CPU requests, Rm is
the number of requests which miss in the cache, and B is the cache line size in
bytes.

In the data cache simulator, miss ratio is calculated as the number of (word)
references missing in the cache over the total number of (word) references. An
alternative definition is the number of bytes referenced missing in the cache over
the total number of bytes referenced. For a data cache these two definitions are
equivalent because all references fall on word boundaries. The alternative
definition, although desirable for the instruction cache, cannot be calculated with
the standard cache simulator because of the trace production method previously
described. For a byte-encoded instruction stream, the two definitions produce

www.manaraa.com

132 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

different results; however, the difference is expected to be small. I I
Figures 4-19 and 4-20 show the hit and traffic ratios of an instruction cache.

Instruction caches offer lower traffic ratios (and lower hit ratios) at the cost of
larger sizes than the instruction buffer (shown in Figure 4-18). These
performance curves can be understood as follows. The hit ratio increases and
traffic ratio decreases with cache size because of the capturing of loops (c.f., the
instruction buffer). Consider the points on the curves where traffic ratio is one,
i.e., all words fetched into the cache are used once and only once. These points,
for line sizes two and four, correspond directly to hit ratios of 0.50 and 0.75.
Consider a general instruction stream, where the last instruction referenced fell
within a given cache line. For a traffic ratio of one (where no information is
reused), hit ratio is defined as follows.

hr = Pr(next reference in line)

= 1 - Pr(next reference not in line)

= 1 - {Pr(branch) + Pr(not branch)*Pr(overruns line)},

where

Pr(overruns line) = mean instr length / line length.

The probability of a branch, Pr(branch), was measured as 0.17, the miss ratio of
the instruction buffer in the previous section:

Pr(branch) = 0.17

llConsider a branch to a two byte instruction target not in the cache. Suppose the target
instruction straddles a word boundary within a line. The method used here gives a miss ratio of
0.5, whereas the alternative miss ratio is 1.0. This large error, of 100%, occurs only for branch
targets which straddle word boundaries, and decreases in magnitude with increasing run length.
Over the total program execution, this error is expected to be small, as is shown here.

An upper bound on the expected error is calculated as follows. The maximum error of 100%
is caused by a branch to a target straddling a word boundary within a line. Thus an upper bound
of the expected error is equal to the probability of an error occurring. The probability of a
branch, Pr(branch) = 0.17, was measured in the previous section as one in 6.5 instructions. The
probability that a branch target straddles a word boundary within a line, assuming uniform
distribution of branch targets, is Pr(straddle) = (m-I)(n-I)/4m, where m is the number of words
per line and n is the number of bytes per branch target. Since (m-I)/m < I,
Pr(straddle) < (n-I)/4. Using the instruction size distribution (Figure 3-11) as an approximation
of branch target size distribution, Pr(straddle) < L Pr(n)*(n-I)/4 = 0.40. Therefore,
E(error) < 1 *Pr(error) = Pr(branch) * Pr(straddle) = 0.07. Again, this upper bound of expected
error is pessimistic because it assumes that each time an error occurs, the statistics are in error
by the maximum of 100%. However, the error drops off rather quickly with increasing run
length, so that this cache simulation model is certainly accurate to within 7%.

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS

0.95

0.85

0
0.75

ia ... - 0.65 :c

0.55

0.45

1.8

1.6

1.4

1.2
0
.~ 1.0
(,) 0.8
~
!:: 0.6

0.4

0.2

0.0

-a- 2 word block
... 4 word block

8 16 32 64 128 256 512 1024
cache size in words

Figure 4-19: Instruction Cache Hit Ratio

oi!J- 2 word block ... 4 word block

8 16 32 64 128 256 512 1024
cache size in words

Figure 4-20: Instruction Cache Traffic Ratio

133

www.manaraa.com

134 MEMORY PERFORMANCE OF PROLOG ARCHITECI'URES

Pr(overruns 2 word line) = 2.6/8 = 0.325

Pr(overruns 4 word line) = 2.6/16 = 0.163.

Therefore hit ratios for these line sizes are estimated as

hr2 = 1 - {0.17 + 0.83*0.325} = 0.56

hr4 = 1 - {0.17 + 0.83*0.163} = 0.69.

These correspond closely to the measured results. The previous analysis
simplified the cache behavior to permit an analytical solution. In general, loops
are captured in cache sizes both above and below the threshold of tr = 1.
Branches cause the sequential instruction stream to be interrupted, causing
portions of lines to never be referenced. These two effects balance at the
threshold. Cache sizes below the threshold produce more traffic and lower hit
ratios because fewer loops are captured. Cache sizes above this threshold
produce less traffic and higher hit ratios because more loops are captured.

Figure 4-21 shows the performance statistics of a combined instruction/data
(liD) cache. Figure 4-22 shows the dirty line ratios of the liD caches. Note that
the dirty line ratios are non-monotonic. In the liD cache, instructions fill the
cache in such a way as to decrease the rate of change of miss ratio for small
caches and increase the rate of change of miss ratio for larger caches.

4.4. Local Memory Configurations

In this section, several uniprocessor local memory configurations are
presented. For each configuration, miss and traffic ratios for instruction and data
are already known from local memory simulations. With the equations of
Section 4.1,

trd+i = trdP d + triPi'
where Pd = 0.77 and Pi = 0.23, the probabilities of data and instruction
references, respectively (see Section 3.2).

The configurations considered are listed below (other configurations can be
similarly calculated with the previous equations). Note that a combined liD
cache captures both instructions and data, whereas split I+D caches consist of
two caches: one for instructions, one for data .

• liD cache (copyback with 4 word line)

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS 135

1.00

0.95

0.90

0 0.85 2 word block
~

-Go 4 word block ...
0.80 :2 -8 word block

0.75

0.70

0.65
64 128 256 512 1024

cache size in words
1.6

1.4

1.2

0 1.0
:;::::;
~ 0.8
(.)

== 0.6 ~ - 0.4

0.2

0.0
64 128 256 512 1024 ooids

1.6

1.4

1.2
0

~ 1.0
~ 0.8 ~
.0

0.6 >-a.
0 0.4 (.)

0.2

0.0
64 128 256 512 1024 ooids

Figure 4-21: Instr/Data Cache Performance Measurements

www.manaraa.com

136 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

o
1ii

0.40

0.35+-----------_~--

0.30 +---~~~---_+--__J"--

0.25 +-------"~~--r_-__:r_-

0.20 -+---~--...._-__'l=--__,_--....,

64 128 256 512 1024
cache size in words

Figure 4-22: IJD Cache Dirty Line Ratio

-& 2 word block
... 4 word block
... 8 word block

• I+D caches (copyback with 4 word line) - instruction cache is one
fourth data cache size. This is meant to approximate the mean
instruction/data referencing ratio of the benchmarks, about 1 :3.

• instruction buffer (3 words) and data cache (copyback with 4 word
line)

• instruction buffer (3 words) and stack buffer

• instruction buffer (3 words) and choice point buffer
Figures 4-23 and 4-24 show each configurations' hit and traffic ratios. For high
performance systems (i.e., high hit ratio and low traffic ratio), the split I+D
caches are best. As the configurations decrease in size, the split caches retain a
traffic advantage; however, the I-buffer + D-cache configuration has superior hit
ratios. This is because the look-ahead I-buffer has better hit performance than an
I-cache. For lower performance systems, the stack buffer configuration is
superior because cache traffic ratios rapidly increase with decreasing cache size.
Note that a combined IJD cache requires less costly hardware than does a split
I+D cache (although less than a 10% reduction in size for most VLSI
implementations) however the latter offers twice the bandwidth to the CPU.

The superiority of the split I+D caches over a combined IJD cache may not
be expected because for traditional architectures large caches display the opposite
behavior [75]. The result is not surprising, however, in the context of Prolog

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS

0

~ -:E

0

~
tl

~

1.0

0.9

0.8

0.7 -Go I/O cache 1+0 caches
0.6 ... I-buf + O-cch

04- I-buf + sbuf
0.5 ... I-buf + cpbuf

0.4

101 102 103 104

size in words

Figure 4·23: Configuration Hit Ratios

1.4

1.2

1.0 ...
0.8

0.6

0.4

0.2

0.0

101 102 103
size in words

-Go I/O cache
.... I+Ocaches
.. I-buf + O-cch
? I-buf + sbuf
.... I-buf + cpbuf

Figure 4·24: Configuration Traffic Ratios

137

www.manaraa.com

138 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

executing on small caches. Prolog programs do not display as much locality as
procedural languages, as indicated by the modest performance of the instruction
caches analyzed in the previous section. This can be attributed to lack of tight
loops. The long Prolog loops appear as sequential code to a small cache (note
that within the loop, there may be branching from one run to another until the top
of loop is re-encountered). Sequential instruction referencing has a devastating
effect on the combined I/D cache. Sequential instruction fetching causes
continuous replacement of data lines by code because of the LRU replacement
policy. Yet the code lines have little or no temporal locality. Thus the program
takes over a larger percentage of the combined cache than it can exploit as
efficiently as the data. Note that the lID and I+D traffic ratio curves, in Figure
4-24, possibly cross for cache sizes larger than those measured. This would
indicate that for large caches Prolog behavior was conventional, similar to the
traditional languages measured by Smith [75].

4.5. Main Memory Design

In the remainder of this chapter, queueing models are used to determine the
memory interleaving required to support the local memory configurations
previously described. This analysis gives the appropriate interleaving to prevent
the memory from becoming a performance bottleneck. The necessary memory
queue length and the expected degradation of processor performance due to
memory contention are calculated.

The system model illustrated in Figure 4-1 consists of a uniprocessor CPU
attached to an interleaved main memory by a single bus. The interleaved
memory consists of m modules, each of which can deliver one physical word per
access. The bus transmits a physical word in T bus' the bus cycle time. A
physical word can be a multiple number of 32-bit words. Each module can
deliver a physical word in Ta cycles, the memory access time. The modules can
be reaccessed after at least Tc cycles, the memory cycle time.

The CPU model used in the remainder of this book is based on the PLM
[21,20], a W AM instruction set processor. Relevant aspects of the PLM (not to

be confused with the PLM benchmark) are reviewed below. For a complete
description of the PLM, see Dobry [23]. Differences between the CPU model
used here and the actual PLM are due to assumptions regarding timing and the
memory design. The PLM timing equations described by Dobry [21] have been
augmented here with timings for built-ins, derived by Mulder [54]. To the first

www.manaraa.com

UNIPROCESSOR M~ORY ORGANIZATIONS 139

order, the two models have approximately the same execution performance,
assuming a one cycle main memory. The queueing models presented in this
section can be used to estimate the performance of other types of processors, e.g.,
PSI-II and SPUR. These processors can be modeled by approximating the
queueing model parameters relative to the PLM. Local data memory behavior
for these models can be assumed to be the same. Local instruction memory
behavior might be derived, for instance, from the data presented by Borriello et.
al. [8].

The PLM memory design is not of concern here because the memory models
previously introduced, e.g., an liD cache, are used instead. A queueing model is
developed in anticipation of its essential role in analyzing multiprocessor
performance (Section 5.4.1). The model is also used to analyze simple
uniprocessors because time is reintroduced, permitting the calculation of
statistics, such as performance degradation and bandwidth efficiency, not
previously obtainable with the simple model of previous sections. Because read
and write requests are issued independently of service time, the requests can
freely contend for the memory modules of an interleaved memory. In addition, a
heuristic is added to the queueing model to approximate the effect of a read miss
stalling the CPU until the target word is delivered. This heuristic is described in
greater detail in Section 4.5.3.

In the next section, the general queueing models are introduced. From these
general models, models of interest can be easily derived. Two such main
memory queueing models are presented in the following sections. The first
assumes a local memory which is a traditional liD copy back cache. The second
assumes a local memory which is a stack and instruction buffer configuration.

4.5.1. General Queueing Model

Two general queueing models are introduced in this section: an open model
and a closed or asymptotic model. The open model, although unrealistic because
its arrival and service rates are independent, is useful for motivating the closed
model. The closed model is more realistic because its arrival and service rates
are equal, i.e., it is in the steady-state.

The open queueing model consists of a CPU which generates requests
independently of a memory which services the requests. The request rate is A
and the service rate is Il. The ratio /J1l, called the occupancy, p, must be
significantly less than one for the open queue model to be accurate.

Analytical solutions exist for certain Markovian processes, e.g., Poisson
arrival times and exponential service times. The M/DIl model assumes a

www.manaraa.com

140 MEMORY PERFORMANCE OF PROLOG ARCHrrECfURES

Poisson arrival distribution (M for Markovian) and a server (1 for single) with a
constant service time (D for deterministic). Arrivals are queued in an infinite
size buffer and served on a first-in first-out (FIFO) basis. The MlD/l model
corresponds to a single CPU issuing requests as a Poisson process and an
interleaved memory system of n modules, each of which has a constant cycle
time, T C' and a queue for waiting requests. The single server in this model is a
single memory module, the assumption being that each module in the system will
act accordingly.

There are two basic statistics of interest for designing an interleaved
memory. 0: is the expected number of requests queued per module not including
the one in service (Q is the expected number of requests queued per module).
T' w is the expected time waiting in queue not including the time spent in the
server. Solutions for these statistics are [43, p.l88-l9l]:

Q' = p2/2(1-p) (4.1)

Q = p + p2/2(I-p) = P + Q'

T' w = (lIA)*p2/2(l-p) = Q'/A.

(4.2)

(4.3)

The design of the interleaved memory has been reduced to a problem of
accurately determining A and J.l. The accuracy of determining these rates varies
with the complexity of the model. As outlined in the previous chapter, a local
memory between the CPU and main memory will filter the requests. In addition,
a local memory with a complex replacement scheme, possibly based on explicit
control by instructions, will add its own requests. These two effects alter the
arrival rate. When various sized objects are transmitted between the local
memory and main memory, the service rate is altered.

The degree of memory interleaving is determined by first calculating the
processor's peak sustainable memory request rate, Ap. The memory is designed
around a peak rate because at burst speeds, the memory should not slow down
the processor. A sustained peak rate is used to avoid overdesigning the memory;
however, the definition of "sustained" is difficult to pinpoint. For scientific code,
often a "typical" inner-loop, e.g., matrix multiply, is used to represent the peak
sustainable rate. The analogous Prolog artificial benchmark is determinate
append/3 (see Figure 2-2). The benchmark append/3, however, does not
use the stack and thus does not generate a peak request rate. Ideally, an artificial
burst benchmark is not what is desired - a measurement of the bursty portions
of a large benchmark is more realistic.

To measure ~ the PLM timing model [21] is used. The PLM timing
equations assume a one cycle memory, i.e., that read requests are serviced in one
cycle. This assumption is legitimate for peak request rate calculations. Although

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS

cycles
U
KLIPSt

CHAT
4120845

47677
116

PLM
4530539

54694
121

t assuming 100 nsec cycle

QCl
4840096

42489
88

Table 4-1: PLM Timings

ILl
2127167

23789
112

141

an instruction may need to wait for a read request to be serviced, counting the
request as a single cycle gives a pessimistic peak: rate, for a conservative memory
design. Table 4-1 shows the PLM cycles and number of logical inferences (U)
for the benchmarks studied. A logical inference is calculated as a user-defined or
built-in procedure call. Performance in terms of thousands of logical inferences
per second (KLIPS) is given, assuming a 100 nsec cycle. Note that to achieve
one application MLIPS performance with PLMs, about 8-10 processors are
necessary. Each processor runs at about 100 KLIPS or 1.5 MIPS.

The PLM timing equations, augmented with timings derived for built-ins
[54], were combined with mean reference counts per instruction, to give the

mean request rate per instruction. This method is accurate because for a given
instruction, cycles per instruction and references per instruction are both
calculated as averages over the benchmarks. Thus the ratio, corresponding to the
request rate, is independent of the mean, i.e., is a valid peak: rate. The unknown
factor is how the instructions combine into a burst rate. To calculate this, a
moving windowed average of the rate is calculated with varying window sizes.
The maximum is calculated to get an approximation of the sustained peak: rate.
Of course, window size affects the calculated rate. A window of one instruction
is an upper bound. An infinite window size indicates an average rate for the
entire program, a lower bound. Figure 4-25 shows the mean (over the
benchmarks) peak: sustainable memory request rate as a function of window size.
Ap = 0.6 words/cycle was chosen for the calculations of this chapter. For a large
window, Abase = 0.46 words/cycle, corresponding to the average request rate.
Note that the CPU issues word requests, although the main memory delivers only
physical words.

Again with the statistics from Section 3.2,

Ap = Ai + Ad

1, = Ap *u/u = 0.6*0.23 = 0.138 words/cycle

Ad = Ap *ud/u = 0.6*0.77 = 0.462 words/cycle,

www.manaraa.com

142

Q)

1ii
~

rna>
~o
C">-
~~
.:r.'E
t'Il 0
Q) ;: a._

MEMORY PERFORMANCE OF PROLOG ARCHITECfURES

0.8

0.7

0.6

0.5

0.4 +--..... --r--.--r--..,.....-..,
o 100 200 300 400 500 600

window size (instructions)

Figure 4-25: Mean Peak Sustainable Request Arrival Rate

where ~ and Ad are the instruction word and data word request rates,
respectively. In this and subsequent queueing models, the average (over the
benchmarks) statistics presented in Chapters 3 and 4 are used as input
parameters. Several of these statistics have high variances with respect to the
benchmarks andlor the W AM instructions. It should be noted that these
variances reduce the accuracy of the queueing model results.

Assuming a simple model of a uniprocessor and main memory, the memory
interleaving (number of modules) and module queue size can be calculated with
the Flores model [28]. This gives a conservative approximation and sanity check
for later calculations using more complex models. The Flores model assumes
that the processor request stream splits evenly across the m memory modules,

A='Vm

~ = lITe

p = AJ~ = ApTc/m.

For ease of addressing a module, m is usually chosen to be a power of two, i.e.,
m = 2k for some integer k. With these parameters, Q' and T' w can be calculated
with Equations (4.1) and (4.3).

The asymptotic queueing model [28], is now described. This model permits
more accurate formulations of the statistics of interest. It will also be shown how

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS 143

these and additional statistics, such as bandwidth efficiency, can be expressed in
tenns of the open model occupancy and the asymptotic model occupancy,
helping the intuition. The asymptotic model represents a closed or steady-state
queueing system, i.e., where the arrival and service (departure) rates are equal.
This model more accurately approximates a real system, where, in contrast to the
previous open queueing system, the occupancy, p, cannot approach arbitrarily
close to one. Consider a memory system of m modules. The offered bandwidth,
Bo' is defined as the average number of customers (requests) arriving (in the
steady state) during one memory cycle, Te' Note that these "arrivals" may be
from the memory queue.

Bo = ApTe·
Assuming unifonn distribution of requests over modules, by the steady-state
assumption, the average number of requests at each module will then be

Q = Bolm = ApTe/m = ("-p/m)Te = AlIl = p.
With the MiDll solution (Equation (4.2»,

Q = Pa + Pa2/2(1-Pa)'

where Pa is the asymptotic occupancy. Equating these two solutions and solving
for Pa,

Pa = 1 + P - (p2 + 1)112,

The achieved bandwidth, Ba, is defined as the average number of requests
serviced each memory cycle. Note that since the model is in the steady state, Ba
is also the outside arrival rate, i.e., the average number of requests arriving from
the CPU each memory cycle. Ba is also the average number of modules busy
during the memory cycle,

Ba = mpa·

The bandwidth efficiency, ~, is defined as the ratio of achieved to offered
bandwidth,

~ = BalBo = mPaiApTe = Pa/p, 0 $ ~ $ 1. (4.4)

Thus the bandwidth efficiency12 can be easily calculated as the ratio of the
asymptotic occupancy to the occupancy of the open queueing model. The
efficiency is thefraction of the bandwidth required by the system, supplied by the
memory.

12The limits on ~ are derived as follows. ~ = pip ;?: 0 is trivially true because P'Pa ;?: O. Also,
P ;?: 0 <=> (1 + p)1I2 ;?: 1 <=> (1 + p)1I2 ;?: 1 + P - P <=> 1 + P - (l + p)li2 ~ P <=> Pa ~ p <=>
~ = pip ~ 1.

www.manaraa.com

144 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

1.0

0.8

0.6 -flo P ... Tw'open -Pa
0.4 ... Tw' closed ~
0.2

0.0 -+--F~--"-~-"--r---r--'
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Te

Figure 4-26: Flores Model O"p = 0.6)

Consider the steady state behavior of the system at a microscopic level.
Assume that (Bo-Ba) customers are enqueued, waiting for service at the start of a
memory cycle, T c' Over the memory cycle, Ba new customers arrive from the
CPU, giving Bo total requests. Ba customers are serviced, leaving a different
(Bo-Ba) customers waiting. Thus in the steady state, (Bo-Ba) customers are
always waiting,

Q' = (Bo - Ba)/m = Bolm - Balm = P - Pa

T' w = Q'/Ap = (p - Pa)/A.p·

Note that both the open and closed models can be formulated in terms of the
effective memory cycle time, Te = Tdm. Te represents using the interleaved
modules in a pipelined fashion. Therefore, in these simple models, performance
can be improved by either decreasing the memory cycle time or increasing the
number of modules, with equal effectiveness. Note that in a real system, because
of other constraints, performance cannot be improved indefinitely by increasing
the number of modules. Figure 4-26 compares the open and closed queueing
models. The occupancies, expected waiting times, and bandwidth efficiency are
plotted as functions of T e'

For lightly loaded systems, both models give similar results. As the system
organization degrades with increasing Te, the open model saturates (p
approaches one), but the closed model does not. The closed model stays

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS 145

saturation by achieving less bandwidth than the open model - this is indicated
by the decreasing bandwidth efficiency, S, with increasing Te' The open model
guarantees delivery of bandwidth equal to the arrival rate of ", words/cycle, the
offered bandwidth. To achieve this under saturated conditions, it requires long
queues and delays. The closed model is self-regulatory in the sense that it cannot
deliver impossibly high bandwidths with an inferior system (high T e)' It
achieves less bandwidth, Ba, with shorter queues and delays. The closed model
is considered more realistic precisely for this reason - a real system cannot
tolerate excessive delays necessary to achieve high bandwidth, and will issue
memory requests at a lower rate as delays cause feedback. The closed model is
used throughout the remainder of the book.

4.5.2. Memory Bus Model

A memory bus can also be modeled, as an independent system resource, with
the Flores model:

Abus = Ap

I1bus = liT bus

Pbus = Abu/l1bus'

The asymptotic model is derived as in the previous section with m = 1,

Bo = AbusTbus = Pbus

Ba = mPa = Pa = 1 + Pbus - (Pbus2+1)112

Sbus = piPbus'

Unless efficiency is high, i.e., occupancy is low, the bus will bottleneck the
memory system, no matter what degree of interleaving is provided. As seen from
the equations, a fast enough bus will avoid this problem. For local memory
models transferring blocks an alternative is to increase the width of the bus, up to
block size.

www.manaraa.com

146 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

4.5.3. Copyback 110 Cache System

The model presented here, based on that given by Flynn [28], is a
uniprocessor attached to a copyback cache (Section 4.2.4). The copyback cache
uses write-allocate strategy wherein both read and write misses cause fetching of
the target. The cache is line (block) oriented, i.e., all transfers to/from main
memory are line transfers. The cache fetches a line on demand with fetch-bypass
and wrap-around load. Fetch-bypass delivers the target line directly to the
processor from memory while the cache is concurrently loaded. Wrap-around
load delivers the target word within the line directly to the processor. Buffers are
assumed, to allow simultaneous transfer of a dirty line from the cache and the
target line from memory.

Transferring a line to/from the cache involves a delay, Tline, defined as

Tline = max(Ta + (L-I)TbUS'Tc)'

where L is the line size in units of buswidths, and T bus is a single bus transfer
time. The max is used to ensure that service cannot complete until after one
memory cycle. The T a term represents waiting for the target word within the
line, and the (L-I)T bus term represents transferring the remaining portion of the
line in burst mode (pipelined) fashion. The major assumption being made here is
that the memory interleaving factor, m, is greater than or equal to L. For the
uniprocessor model, there is no advantage to making m greater than L, because
the extra modules cannot decrease Tline.

The cache request rate is approximated with two streams: Al and~. The
first stream represents requests that do not stall the processor. The second stream
represents requests that do stall the processor.

Al = "'-w *MRw + Ap *MR*DR

~ = A/MRr

TI = Tline

T2 = TUne - Tdead

Tdead "" Ta
These two streams are combined with an MlG/1 queueing model:

A = Al + A2

T = (AI /A)T 1 + (A2/A)T 2

J.l = liT

(4.5)

(4.6)

(4.7)

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS 147

(4.8)

In the above equations, MR is the miss ratio of the local memory, split into MRr,

the read miss ratio and MRw' the write miss ratio. DR, the dirty line ratio, is the
ratio of dirty to clean lines replaced. Values of these statistics are given earlier in
this chapter (Figures 4-22 and 4-23). These values, with corresponding line and
cache sizes, are used as input parameters to the queueing models. The input
request stream, Ap' is split into Ar. the read miss requests, and Aw, the write miss
requests. 110 is not modeled in this or subsequent formulations, although it can
be easily be included [28].

The Tdead term is a heuristic which indicates that requests will not arrive at
the memory while the processor is waiting for the target word of a read miss, i.e.,
during the T a delay. In this and subsequent models, T dead is thus approximated
as T a. Consider the arrival of requests on a time line. A gap appears during the
T a delay, when no arrivals will occur. However, the simple queueing models
used assume independent arrival and service rates. The effect of a decreased
arrival rate is approximated by increasing the service rate. Note that although
write-allocation is assumed, it is also assumed that the CPU need not wait for a
write miss request to be serviced.

An MlG/I asymptotic model [28] is similar to the MlD/l asymptotic model
of the previous section. Consider a memory system of m modules as a single
server. By the steady-state assumption, the average queue size is

Q=AT=A1T1 +AzT2 =p, O:S;Q,p:S;l.
Using the Pollaczek-Khinchine solution [43, p.187],

Q = Pa + p/(1+C2)!2(1-Pa),

where Pa is the asymptotic occupancy. Solving,

Pa = (1 + P - (p2+2C2p+l)1I2)/(I_C2). (4.9)
The statistics of interest, T' wand Q', are derived from the asymptotic occupancy,
using the standard MlG/I solutions,

Q' = Pa2(1+C2)/2(1-Pa) (4.10)

T' w = Q'/A, (4.11)

where C2, the coefficient of variation, is

C2 = (A1/A)(1-T 1/T)2+(Az/A)(1-T2/T)2, O:S; C2:s; 1.

The memory bandwidth efficiency, ~mem' is derived in a manner similar to
Equation (4.4),

~mem = Pa/p. (4.12)

The degradation of uniprocessor performance due to main memory

www.manaraa.com

148 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

contention is now calculated. To simplify the equations, processor performance
is measured in units of cycles per instruction (the inverse of the conventional
definition). Degraded typical performance is measured rather than degraded
peak performance. Recall from Figure 4-25 that the average memory request rate
is Abase = 0.46 words/cycle. Recall from Section 3.2 that the average request rate
per instruction is U = 3.0 words/instr. Therefore the average processor
performance, Pbase' is

Pbase = U/Abase = (3.0 ref/instr)/(0.46 ref/cycle)

= 6.5 cycles/instr.

For a 100 nsec cycle PLM, this corresponds to an execution rate of about 1.5
MIPS. The performance of a processor assuming no misses, P no-miss' is now
calculated.

P no-miss = Pbase + Pbranch'
where Pbranch is the branch penalty in cycles/instr,

Pbranch = Pr(uncond)T uncond+Pr(cond)T cond+Pr(micro)T micro·
Unconditional branches are instructions such as call, execute, and try.
Conditional branches are instructions such as switch constant and
switch_term. The fail operation and escape instructions are categorized
as micro branches, because although they do not appear in the image
architecture, they may still evoke a penalty, depending on implementation. From
Section 4.3.1, Pr(branch)=0.17 on average. CHAT presents statistics close to the
mean and is therefore used to estimate Pbranch. For CHAT, Pr(uncond)=O.l1,
Pr(cond)=0.04 and Pr(micro)=0.04. Assume that Tuncond=1 cycle, Tcond=2
cycles, and Tmicro=1 cycle. Therefore, assuming no cache misses,

Pbranch = 0.11 * 1 + 0.04*2 + 0.04* 1 = 0.23 cycles/instr

P no-miss = 6.5 + 0.23 = 6.73 cycles/instr.

Actual processor performance, P actual' accounts for misses.

P actual = P no-miss + P miSS'
where P miss' the miss penalty in cycles/instr, is

P miss = T access *Ur *MRr·
Recall from Section 3.2 that the average read request rate per instruction is
u r = 1.6 words/instr. When calculating the miss penalty, only read misses are
considered because of the previous assumption that only read misses stall the
processor. The expected miss delay, T access' is

Taccess = Ta + T'w'

where T a is the memory access time and T' w is the previously defined expected

www.manaraa.com

UNIPROCF3S0R MEMORY ORGANIZATIONS 149

waiting time. Degradation, D, is the fraction of ideal processor performance
(assuming an infmite local memory) lost due to local memory misses in an actual
processor (with a finite local memory). In the following definition of D, recall
that performance is defined inversely to standard definitions.

D=(Pactual-Pno-miss)lPactual' O~D~1. (4.13)
A bus model for this system is derived as in Section 4.5.2, with

Abus = ~ *MR*(I+DR)*L.
This bus model assumes that addresses issued for read requests do not require a
separate bus cycle. The bus bandwidth efficiency, ;bus' is the fraction of the
bandwidth required by shared memory and the processing elements, supplied by
a single shared bus. Recall that the bandwidth efficiency, ~mem' is the fraction of
the bandwidth required by the processing elements, supplied by the shared
memory, assuming an ideal bus, i.e., ;bus = 1. These statistics are related to PE
performance because reduction in bandwidth efficiency implies reduction in the
bandwidth offered, which is approximately proportional to the rate at which the
PEs execute instructions. The efficiency statistics are not combined with
performance degradation, D, so that the effects can be viewed separately.

Figures 4-27 and 4-28 show the queueing model measurements for a
selection of the lID caches analyzed in Section 4.3.2. Shown are bus bandwidth
efficiency, main memory bandwidth efficiency, and percent performance
degradation, plotted as functions of cache size. Figure 4-27 assumes a two word
bus, Figure 4-28 a one word bus. Sufficient interleaving to transmit cache lines
in a single burst (m ~ line-size/buswidth) is assumed throughout. Other
implementation assumptions used are T bus=l cycle, T a=3 cycles, and T c=5
cycles.

Recall from the previous queueing model descriptions that main memory
efficiency and processor degradation are modeled together, independently from
bus efficiency. The decoupled models allow separate views of bus and
interleaved memory performance. The main memory efficiency and processor
degradation models assume that the bus achieves the full bandwidth supplied by
the processor.

The results from Figure 4-27 indicate that with sufficient interleaving
(implicit in the model) and enough bus capacity (speed and/or bus width), large
block sizes produce the least performance degradation and achieve the most
memory bandwidth. For a given cache size, as block size decreases these metrics
degrade slowly at first, then rapidly. The queueing model favors large blocks as
long as the cache is large enough to generate correspondingly low miss ratios.
Miss ratios fail to decrease significantly with increasing block size, for a certain
minimal cache size (see Figure 4-10). In these benchmarks, this happens for a 64
word cache.

www.manaraa.com

150

1.00
!I)
:l 0.95 .0

"-"
>.. 0.90
C)
c: 0.85 QJ

.(3
0.80 :e

QJ

..c:
i5

0.75

.3: 0.70
"'C
c: 0.65 (\l
.0

0.60

1.00
E .,

0.95 E
"-"

~
0.90

c: 0.85
QJ

:2 0.80 :t:
QJ

..c: 0.75
i5 .3: 0.70
"'C c: 0.65 (\l
.0

0.60

25

0 20
c:
0

15 ~
~
Ol 10
QJ

"'C

#. 5

0

MEMORY PERFORMANCE OF PROLOG ARCHITECI'URES

Bus Efficiency

128 256 512
cache size in words

Main Memory Efficiency

128 256 512

P~rformance Degradation

128 256 512

-iii- 2 word block
-+ 4 word block
.... 8 word block

1024 words

Tc= 5 cycles
Ta = 3 cycles
Thus = 1 cycle

1024 words

1024 words

Figure 4·27: Copyback I!D Cache Queueing Model: 2 Word Bus

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS

E
Q)

E
U.f'

o
c::
o
.~

"0
~
OJ
Q)
"0

(f.

1.00 Bus Efficiency
0.95 +--------------~

0.90 +---------:::_-=.;~-""~""::II

0.85 -I--____ ~.c:...---.:>'..c-......... '""""".:::::..--

0.80 +-------::r----r-----
0.75 +----~--~------

0.70 -l--------,,,,£..--------

0.65 +----~::.......---------

0.60 +-----.,.-----,----.------,

-& 2 word block
..... 4 word block
.... 8 word block

1~ ~6 ~2 1024 words
cache size in words

1.00 Main Memory Efficiency
0.95 +---------------
0.90 +----------------=--
0.85 +------------:;..,.c.:.....-"~=-

0.80 +-------~-~~~

0.75 +-----~'S;L=--~------

0.70 +-___ ~L-.-~--_--_-~
0.65 +------r--------~

0.60 +------.~--.,_--__,.__--....,

Tc = 5 cycles
Ta = 3 cycles
Tbus = 1 cycle

128 256 512 1024 words

25 Performance Degradation

O+----.---~---r_--~

128 ~6 512 1024 words

Figure 4-28: Copyback IID Cache Queueing Model: 1 Word Bus

151

www.manaraa.com

152 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

The queueing model, however, does not indicate that the traffic has been
decreased by the interleaved memory. The bus bandwidth efficiency is best for
small lines. Bus traffic increases with line size because the decrease in miss ratio
afforded by large lines does not outweigh the cost of transferring larger lines.
Since bus traffic and therefore occupancy increases with line size, bus bandwidth
efficiency decreases, i.e., the bandwidth achieved by the bus becomes
proportionally smaller than the bandwidth required by the system.

These results should be considered a refinement of the conclusions reached
in Section 4.2.4. Previously, miss and traffic ratios were used to compare
different caches. The conclusion was that medium sized (four word) blocks
produce the best tradeoff between miss and traffic ratio. Similarly, the queueing
model presents a tradeoff between the bus bandwidth efficiency vs. memory
bandwidth efficiency (and processor degradation). Again, medium sized blocks
appear to display the best characteristics.

Figure 4-28, when compared with Figure 4-27, illustrates that in a system
with a one word bus, eight word blocks lose much of their advantage over
smaller blocks. In the one word bus system, bus efficiency degrades more
rapidly with increasing block size. The main memory efficiency also degrades
significantly for large blocks in the one word bus system. Note that in the
models of Figures 4-27 and 4-28, the values of T bus and Teare such that the
memory efficiency and performance degradation of two word block caches do
not change. This happens because the advantages of burst mode transfer are
minimal for these parameters. This comparison serves to illustrate a more
general trend in the queueing equations: all the metrics will degrade with
decreasing bus capacity; however, smaller blocks will cause less degradation.

4.5.4. Stack and Instruction Buffer System

In this section, a stack buffer model (Section 4.2.2) and instruction buffer
model (Section 4.3.1) are described. The two models are then combined. The
data buffer can be either a choice point buffer, stack buffer or E-stack buffer,
since all are managed in a similar manner. Instructions which allocate an object
may copyback a dirty portion of the buffer to make room for the new object.
This operation is preallocation, but not prefetch, i.e., objects are never read in
from memory. Other instructions manipulate the top of stack, possibly
invalidating the buffer, but this never requires copyback. Memory references to
the valid portion of the buffer are serviced from the buffer, whereas other
references are serviced from memory. However, buffer misses never imply
replacement or copyback.

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS 153

A stack buffer model similar to that of a write-through cache [28] is used.
Management is modeled with three arrival rates: read misses \miss' write misses
Awmiss' and copyback requests Acopy. Misses reference a single word.
Preallocation instructions copyback a variable sized block. Write misses and
copyback requests are combined into a single stream, AI' with a service time T l'
The effect of memory interleaving is modeled by reducing the Al arrival rate by
the interleaving factor, m. The valid range of m in the model is constrained by
the number of outstanding write misses and copybacks that the processor can
sustain. In the previous cache model, m does not appear explicitly, and is
inherently constrained to retain validity. Read misses form a separate stream, '-2,
with service time T 2' These arrival rates and service times can be combined with
an M/O/l model (Equations (4.5)-(4.8)):

where

Al = (Awmiss + L *Acopy)/m

A,2 = Anniss

TI =Tc

T2 = Tc - Tdead

Tdead"" Ta,

Amiss = Ad*MRd = Anniss + Awmiss

Acopy = Ad*PR,
for stack buffer miss ratio, MRd, prefetch ratio (ratio of preallocation instructions
to memory references), PR, and average copyback block size (in words), L.
Anniss and Awmiss are calculated with read and write stack buffer miss ratios.
Note that MRd and L are dependent, whereas PR is independent, of buffer size.
The T dead term in T 2 is introduced for the same reason as in the cache model of
the previous section. Recall that the T dead heuristic models feedback within the
queueing equations, to approximate the behavior wherein the processor stops
issuing requests between issuing a data read miss and receiving the result.

This model lumps copyback in the arrival rate, treating all requests
independently. L is measured in units of words (stack buffer entries), rather than
buswidths. Buswidths would be more accurate, and somewhat lower, if the bus
is wider than one word. A line oriented stack buffer would permit splitting the
model into a system where a copyback service time, T COPY' would assume
pipelined transfer of lines (as in copyback cache model). Line oriented buffers
are not modeled in this book.

The calculation of Acopy is made by determining the ratio of preallocation

www.manaraa.com

154 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

instructions (allocate, try, try_me_else) to memory requests. The
assumption implicit in this calculation is that the preallocation instructions are
infrequent, so that the peak sustainable rate is approximately the same as the
mean rate over the benchmark programs.

A look-ahead instruction buffer model, independent of the previous stack
buffer model, is now described. Recall that the instruction buffer has a traffic
ratio greater than one. Here, a memory module is described with two arrival
rates and service times corresponding to two types of events: sequential
instruction execution and taken branches. All instruction references cause
prefetching of new instruction words of equal size. A taken branch, however,
indicates a miss in the buffer, causing the prefetching of an entire buffer, d
buswidths in size. These arrival rates and service times are combined with an
MlG/1 model:

Al = Aim

1.2 = t,*MRi

TI =Tc

T2 = Tline = max(Ta+(d-l)Tbus,Tc)'
where Ai is the instruction word request rate and ~ is the instruction buffer
miss ratio. For instruction prefetching, T dead is not appropriate in T 2 because the
processor does not stall. Assumptions made above are that the instruction
requests are distributed uniformly across the modules and that the buffer size,
d$m.

The model of a stack buffer configured with an instruction buffer can be
simplified by assuming that T 2",0 in the stack buffer model. The streams of each
are then combined with an M/G/l model:

Al = (Awmiss + L * Acopy + t,)/m

1.2= AtMRi

TI =Tc

T2 = Tline = max(Ta+(d-l)Tbus,Tc)

An MlG/l asymptotic model for the stack buffer configuration is similar to that
of the previous section. A bus for this system is modeled as in Section 4.5.2,
with

Abus = Amiss + L*Acopy + Ai + Ai*~*d.
Figures 4-29 and 4-30 show the stack buffer configuration queueing model

measurements. Percent processor degradation and bandwidth efficiency are

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS

45

25+-----.-----r----.-----.----~

16 32 64 128 256
stack buffer size in words

-m- 4-way
.... 8-way
.. 16-way

155

Figure 4-29: Stack Buffer Configuration: Performance Degradation

0.90

~
E

>JJ'
w---

0.85

~ c:
Q)
·0 0.80
:i:
Q)

-Go 4-way 8-way .. 16-way
-+- bus (Tbus= 1)

.c
i5 0.75
.~

.----
..,. --- bus (Tbus=0.5)

"0 c:
co

..0 0.70
16 32 64 128 256
stack buffer size in words

Figure 4-30: Stack Buffer Configuration: Memory Bandwidth Efficiency

www.manaraa.com

156 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

plotted as functions of stack size. A set of curves is shown corresponding to
different interleaving factors. It is assumed that each buffer is configured with a
three word instruction buffer. A one word bus with T bus= I cycle, T c=5 cycles,
and T a=3 cycles is also assumed. For stack buffers, a mean PR=0.028 and L=6.8
words have been calculated across the benchmarks. The value of PR justifies the
previous assumption that a peak allocation rate is not necessary. Figure 4-30
includes two curves for bus efficiency, ~bus' corresponding to Tbus=l cycle and
Tbus=0.5 cycles.

Note that performance degradation for the stack buffer configuration is
calculated with respect to the ideal performance of a processor with a local
memory of unlimited size. Alternatively, degradation can be calculated with
respect to the ideal performance of a processor with a stack buffer of unlimited
size (increasing the size of the look-ahead instruction buffer will not significantly
improve its performance). It is useful, however, to calibrate all degradation
statistics with respect to a single baseline.

Figure 4-29 indicates that degradation decreases with increasing stack buffer
size and interleaving factors. The rate of improvement decreases, however. This
implies that a cost-performance optimum may be reached with mid-size buffers.
The precise optimum depends on how cost increases with buffer size and
interleaving factor, a function of technology. For instance, a 128-word stack
buffer with an 8-way interleaved main memory may have the best cost
performance.

The bus efficiency for Tbus=l is rather low, falling between the 4-way and
8-way memory efficiencies. To avoid bus saturation, the bus capacity should be
increased, by increasing the bus speed or width. As shown in Figure 4-30, by
increasing the bus speed by a factor of two (Tbus=0.5) the bus efficiency jumps
from about 0.78 to 0.88 for 256 word buffers. If bus capacity is increased by
widening the bus, stack buffer entry size should be made equal to (or larger than)
bus width to exploit the increased capacity. In such a case, multiple word stack
buffer entries may be an improvement in a VLSI implementation. If the bus
capacity is not increased, over-designing the main memory should be avoided
under these conditions. The memory need only be designed to handle the
75%-80% of the bandwidth offered by the processor, achieved by the bus. A
4-way interleaved memory is likely to be sufficient in this situation.

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS 157

4.6. Summary

In this chapter, two-level memory hierarchies are defined for sequential
Prolog architectures. The memory model consists of a fast local memory and a
slower, larger interleaved main memory. Recall that in the previous chapter,
architecture memory-referencing characteristics are based on the zeroth-order
statistic of the number of memory references made. The local memory
performance measurements presented in this chapter are based on first-order
statistics such as traffic ratio. The interleaved memory performance statistics
presented at the end of this chapter are based on the higher-order statistics of
miss penalty, performance degradation, and bandwidth efficiency. This
progression of refinement in the models allows increasingly detailed analysis of
the referencing behavior of Prolog programs executing on complex hosts.

Several local memory. models are presented in order of increasing
performance, cost, and generality. Envisioning a single chip microprocessor, the
local memories considered are small (up to 1024 32-bit words). Initially, only
data referencing is considered. At the low end, a single choice point buffer as
small as 12 words offers a miss ratio of 0.55 and a traffic ratio of 0.62. A stack
buffer of only 64 words offers a miss ratio of 0.28 and a traffic ratio of 0.30. The
stack buffer, more complex than the choice point buffer, captures both choice
point and environment references. A copyback cache, capturing all types of
references, does better still - a 256 word cache (with four word lines) offers a
miss ratio of 0.05 and a traffic ratio of 0.23. At the high end, smart caches,
which avoid transferring lines no longer in a valid storage area, reduce the cache
traffic ratio by up to 30%.

Local memories for instruction references are also analyzed. Measurements
of both instruction buffers and caches are presented, allowing comparison of
alternative local (instruction + data) memory configurations. At the low end, the
stack buffer configuration offers better memory performance than the caches
because cache traffic increases rapidly with decreasing cache size. At the high
end, split 1+0 caches display the best memory performance; however, the trend
indicates that for larger caches, the combined lID cache might achieve equal
performance. Although the combined liD cache is slightly less costly to
implement in VLSI than a split 1+0 cache, the latter offers twice the bandwidth
to the CPU.

These results clarify the discussion in Chapter 2 concerning the relationship
between the traditional and register-based CIFs. As is indicated in this chapter,
caches, which capture all types of references, offer greater reduction in memory
traffic and higher hit ratios than stack buffers. At little extra cost, a cache-based
host may implement a small, fast register set. Such hosts are expected to gain

www.manaraa.com

158 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

little advantage with the traditional CIF as compared to the register-based CIF
(some reduction in instruction bandwidth can be expected - as much as 16% as
is shown in Chapter 3). Thus the W AM, a register-based DCA, is seen to be
well-suited for realistic Prolog hosts. In fact, the W AM also performs quite well
on a host with a stack buffer (and register set), as is shown in this chapter. These
results do not preclude the superiority of a traditional-CIF DCA for other types of
hosts, e.g., a host with only a large stack buffer.

The second-level main memory and memory bus are analyzed with
asymptotic MlGll queueing models, for alternative local memory configurations.
Queueing models are beneficial primarily because they reintroduce time into the
previous local memory models, allowing the calculation of second-order
statistics, such as miss penalty. The queueing models are driven with a peak
sustainable memory request rate corresponding to a W AM processor with an
average execution rate of approximately 100 application KLIPS. This peak
request rate parameter is calculated in the emulator with the PLM timings [21],
assuming a 100 nsec cycle time and one cycle memory latency. In the
uniprocessor organizations considered in this chapter, main memory and bus
performance are characterized with statistics for performance degradation and
bandwidth efficiency (the fraction of the bandwidth required by the system,
supplied by the memory or bus). The main memory and bus are modeled
independently to allow separate views of the system components. Alternatively,
the queueing models could be coupled to produce a single metric of system
performance.

Both a combined 110 cache configuration and a stack buffer + instruction
buffer configuration are analyzed. For the 110 cache, memory bandwidth
efficiency is maximized with large cache blocks. Bus bandwidth efficiency,
however, is maximized with small cache blocks. These results support the
previous first-order statistical results, indicating that medium size (four word)
blocks appear to display the best tradeoff of characteristics. The selection of
block size is also shown to be dependent on bus width. In general, with
decreasing bus capacity, small blocks cause the performance and efficiency
metrics to degrade more slowly than do large blocks.

For the stack buffer configuration, main memory bandwidth efficiency
improves with increasing interleaving. In contrast to the cache configuration,
where interleaving is implicitly limited by block size, the stack buffer
configuration can take advantage of larger interleaving factors. This is because
the stack buffer is managed by copying-back groups of stack entries. Copybacks,
write misses, and instruction read requests are assumed to be uniformly
distributed across the memory modules. Large interleaving factors offer the
stack buffer configuration greater memory bandwidth efficiencies than the cache
configuration, for approximately equal size local memories.

www.manaraa.com

UNIPROCESSOR MEMORY ORGANIZATIONS 159

The bus efficiency of the stack buffer configuration is somewhat inferior to
that of the cache configuration. For equal capacity buses and local memory
sizes, the 256 word stack buffer configuration bus efficiency falls between the
bus efficiencies for the four and eight word block cache configurations. The
stack buffer configuration bus efficiency does not significantly improve with
increasing local memory size, as in the cache configuration. These results can be
attributed to the higher miss ratios of the stack buffer and the look-ahead
instruction buffer as compared to the liD cache miss ratio. As discussed, the
stack buffer is limited by capturing only stack references, and the look-ahead
instruction buffer is limited by the branch frequency. In contrast, the IJD cache
captures all reference types and can also capture loops.

The performance degradation of the stack buffer configuration, calculated
with respect to the same baseline as the cache configuration, is significantly
higher than that of the cache configuration. The minimal achievable performance
degradation is constrained primarily by the previously mentioned high miss ratio
of the stack buffer configuration. For instance, with 16-way interleaving, the
benchmarks measurements indicate a minimal limit of about 25% degradation.
In comparison, even a 256 word liD cache configuration (with four word blocks
and one word bus, implying 4-way interleaving) can achieve about half this
degradation. Large caches achieve less than 5% performance degradation.

In the next chapter, similar analysis and performance measurements are
given for parallel Prolog executing on shared memory multiprocessors. The
difficulties encountered in extending the models of this chapter to a
multiprocessor include both memory design (e.g., how to efficiently maintain
consistency in a two-level hierarchy) and memory analysis (e.g., how to
accurately represent mUltiple processing elements within a simple queueing
model).

www.manaraa.com

5 Multiprocessor Memory Organizations

In this chapter, two-level memory hierarchies are defined and analyzed for
the Restricted AND-Parallel Prolog (PW AM) architecture (reviewed in Section
2.3). PW AM is chosen for study in this book for several reasons. It is an
extension of the Warren Abstract Machine (W AM), which allows fair
comparison between sequential and parallel Prolog architectures. It is designed
to execute sequential code efficiently with a modified W AM storage model.
High-level measurements presented in Section 3.5 support this criterion. It is
designed to execute parallel code with low communication and parallelism
control overheads. Measurements are presented in this chapter which support
this second criterion. The results from the RAP-Prolog benchmark measured
indicate, for example, that a tightly-coupled shared memory multiprocessor with
eight high-performance processing elements coupled with a 32-way interleaved
memory and a high capacity bus can achieve a speed-up of 750%.

5.1. Memory Model

RAP-Prolog programs are modeled executing on a shared memory
multiprocessor model. Many alternative types of multiprocessors have been
designed for the execution of procedural/scientific programs [49]. These
organizations offer high performance by incorporating distributed memories and
complex interconnection networks. The approach taken in this book is to
measure PW AM under the assumptions of a relatively simple multiprocessor
model to acquire insights into the memory bandwidth requirements of PW AM.
There are currently few published results concerning the execution performance
or memory characteristics of parallel logic programs. Therefore little intuition

www.manaraa.com

162 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

J:
SHARED

I I I
MEMORY

LOCAL LOCAL LOCAL
MEMORY MEMORY MEMORY

,."

I I ••• I
,

CPU CPU CPU

Figure 5-1: Multiprocessor Shared Memory Model

exists, as it does for proceduraVscientific programs, as to the best multiprocessor
configurations. The first step in this evolutionary approach was taken by
Hermenegildo - an abstract shared memory with no contention was assumed for
the design of PW AM [36]. The simple memory model used in this book extends
Hermenegildo's model and is sufficient to indicate communication costs and the
effectiveness of local memory designs. With the flexibility of the simulation and
queueing models presented here alternative memory design parameters can be
explored.

The multiprocessor system model considered in this book, as illustrated in
Figure 5-1, consists of a shared memory connected to a set of identical
processing elements (PEs), each with a private, local memory. Each PE
references its own local memory, which if it misses, makes a request to shared
memory. One PE cannot directly access another PE's local memory, nor can a
PE directly steal a shared memory request from another PE and satisfy it. The
shared memory consists of a set of identical memory modules. The modules are
connected to the PEs with an interconnection network. Similar to the analysis of
the last chapter, queueing models are developed to determine the performance of
the interleaved shared memory and the efficiency of a single shared bus
interconnection network.

A single shared bus system represents only one of several alternative

www.manaraa.com

MULTIPROCESSOR MEMORY ORGANIZATIONS 163

multiprocessor configurations. Of course, a single bus interconnect cannot be
used in a parallel system of arbitrary size; however, it is a reasonable
organization for a tightly-coupled PW AM shared memory multiprocessor with a
limited number of high-speed PEs. Figure 5-1 illustrates such an organization.
The single bus allows all PEs to simultaneously view all memory requests and
acts as an arbiter to resolve races to update locks (described in detail in later
sections).

The memory referencing characteristics of PW AM are of interest to
determine the cost, in terms of increased memory traffic, of exploiting
parallelism. The various overheads involved are listed below.

• CGE conditions - To execute a conditional graph expression (see
Section 2.3), evaluation of conditions at runtime may be necessary.
This is not analyzed here.

• control of parallelism - Extra bookkeeping references (not present
in the W AM) are necessary in PW AM to control parallelism.
Measurements of this overhead are presented in Section 3.5.

• loss of locality - The W AM stack is a private area, yet the PW AM
objects allocated to it, for the most part, are used for process
management, a global function. This implies that some percentage
of sequential performance has been sacrificed to implement the
mechanics of the PW AM model. The performance loss is due to
reduced memory locality, a result of mixing choice points and
environments with Parcall Frames and Markers. Note that the RAP
Prolog benchmark analyzed is determinate, so that no Markers are
used. Therefore locality measurements presented include only the
effects of Parcall Frames.

• coherency overheads - To solve the consistency problem in
certain multiprocessor organizations, overhead traffic is generated.

PW AM (and its relative, the W AM), is an abstract model above the level of
the memory organization. In other words, specifications for caches and other
hardware organizations are not included in the architecture. A problem of
maintaining consistency among the local memories arises when mapping the
architecture onto a two-level memory hierarchy. PW AM avoids copying of
passed arguments (i.e., copying at the architecture level) by having a child
process access its arguments nonlocally from a parent process. This method of
"on demand" access is in a sense optimal because no overheads are invoked for
portions of passed arguments that are not used. However, a two-level shared
memory hierarchy causes nonlocal-access consistency problems. These can only
be solved by copying at the memory organization level. This problem implies
that the advantages of avoiding argument copying will be lessened because of the
extra memory traffic generated when retaining consistency.

Many of the local memory designs presented in the previous chapter cannot

www.manaraa.com

164 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

be used within the shared memory model because these local memories cause
consistency problems. In the next section the consistency problem is defined in
detail. Coherent local memory models are described and measurements of their
efficiencies are presented.

5.2. The Consistency Problem

The consistency or coherency problem refers to the management of local
memories in a multiprocessor system, ensuring that each processor sees a
consistent view of the virtual address space. The consistency problem is
composed of two parts: keeping the shared memory consistent with a local
memory, and keeping the local memories consistent with each other. Rather than
give a general description of the consistency problem (see Censier [15] for
instance), a description specific to PW AM is given in this section.

PW AM can be considered a work driven paradigm (c.f., process driven
paradigm), where parallel call goals are stacked (in the Goal Stack) by a parent
process. An idle processor can access one of these goals and initiate a child
process. The consistency problem is best illustrated by considering the simple
case of two processors. Assume the parent and child processes reside on
different processors. The child process references argument structures in the
stack and heap of the parent process. A structure consists of ground terms and
unbound variables. For instance, if the goal contained an argument instantiated
to the structure f (a, Z) , the ground terms are the structure f / 2 and the con stant
a/O. The unbound variable is z. When local memories exist, the following
problems can occur:

1. If the local memories are copyback managed, the passed structure
may exist (in most recent form) in the parent processor's local
memory, but not in shared memory. Since the child processor
cannot direct access the parent processor's local memory, there is a
consistency problem.

2. Unbound variables of a passed structure are no longer valid in the
parent processor once the parallel call is entered. The variables
won't be referenced until after the parallel call is exited; however,
at this point, the variables are not guaranteed to be up-to-date (the
child process may bind them).

3. If the local memories are copyback managed, the solutions
(bindings for previously unbound variables in the passed
arguments) produced by the child process may exist (in most recent
form) in the child processor's local memory, but not in shared
memory. This consistency problem is symmetrical to 1.

www.manaraa.com

MULTIPROCESSOR MEMORY ORGANIZATIONS

4. Unbound variables in the passed structures are no longer valid in
the child processor after the child process succeeds, if subsequent
processors bind them. This consistency problem is symmetrical to
2.

165

As is apparent from the above description, consistency need be ensured only
at process invocation and completion, i.e., process boundaries. While a process
is running, it is guaranteed, by PW AM, not to modify shared data, and therefore
consistency need not be ensured. For instance, a standard local memory could be
made consistent at these process boundaries by invoking a software manager
which operated locally (making worst case assumptions concerning which data
object will be shared after the process boundary is crossed). It is more efficient,
however, to ensure consistency incrementally, for each memory reference, with
coherent local memories. Historically, the first such coherent caches proposed
used a write-through strategy for all writes [32]. A write to a block that is shared
among the caches causes invalidation of all remote copies. This is considered the
least costly and lowest performance solution.

Cache coherency protocols recently proposed in the literature, although
designed primarily for scientific multiprocessors, can also be used for
implementing a PW AM multiprocessor. A family of fully distributed broadcast
cache synchronization schemes is described by Bitar [6] and measured by
Archibald [3]. Two main variations of broadcast cache protocols are analyzed
here. Both are identical except for how they handle a write to a block that is
possibly shared among the caches. The first scheme ("write-in") involves writing
into the local cache only, and invalidating shared (remote) copies. The second
scheme ("write-through") involves writing-through to remote copies (and shared
memory), i.e., shared copies are updated. These are high cost, high performance
solutions. Traditional write-through cache schemes should not be confused with
the write-through broadcast scheme. For traditional write-through caches shared
memory is updated for all writes. The write-through broadcast scheme indicates
that only "possibly shared" blocks (as indicated by the blocks' status) are written
through. This broadcast scheme implies that dirty blocks may exist which need
to be copied back to memory upon replacement.

Prolog architectures have several advantages over traditional architectures
which should alleviate the complexity and cost associated with broadcast caches,
if properly exploited. A variation of the proposed write-through broadcast
caches and traditional write-through caches, called a partial write-through or
hybrid cache, is analyzed as an example of this type of solution. The hybrid
cache is a compromise between the simplicity/inefficiency of a traditional write
through cache, and the complexity/efficiency of a write-through broadcast cache.
The hybrid cache, described in detail in a later section,. is simpler than the
broadcast model in one major respect: blocks do not require an access status

www.manaraa.com

166 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

(such as private or shared). The proposed broadcast schemes use the status to
determine if a write-through is needed. The hybrid cache writes-through
references by static type, not by dynamic status.

5.2.1. Broadcast Cache Coherency

Recently proposed coherent caches are based on copyback caches with the
attribute that shared memory need not be consistent at all times with the local
memories. The local memories must still be consistent among themselves. In
this book, these schemes are collectively called broadcast cache models. An
abstract model is developed here encompassing a family of fully distributed
broadcast caches, as described by Bitar [6]. The model abstracts the traffic
behavior of the various individual protocols, without specifying management
detail. The model assumes that each local cache line has an access status. Most
proposed statuses include the concepts of private (the line is resident only
locally) and shared (the line is resident locally and possibly resident remotely).
Line status is used by a particular protocol to determine how to manage read and
write requests. There are many design options available in these protocols, but
only one is a major concern here: the treatment of a write to a possibly shared
line. There are basically two ways to do this write: write-through and write-in.
In the following discussion, a write-allocation policy is assumed. Recall that
write-allocation fetches the target of a write miss into the cache.

A write-through strategy updates remote copies, and possibly shared
memory. During a write to a shared line, the processor first arbitrates for the bus.
After getting control of the bus, it places the address and the value on the bus
(this is known in the literature as a write-broadcast). Other caches communicate
back if they had copies. If there are no remote hits, the cache changes the status
of the block from shared to private, otherwise the status remains shared.
Assuming that handshaking is not needed, the action requires only a minimal bus
transaction cycle.

In its most general form, a write-through synchronization policy need not
update shared memory. In some systems, it may be advantageous to avoid the
update, e.g., if the bus cannot be used to simultaneously write to both remote
caches and shared memory, or if the shared memory is very much slower than the
caches. For instance, the Dragon computer does not update shared memory [3].
In this book, hardware is assumed that benefits from simultaneous update of
shared memory. In most systems, the status of a line cannot indicate, with
absolute certainty, if a line is shared because natural replacement may
independently remove all remote copies. In this case, the write-through policy
will accomplish only an update of shared memory.

www.manaraa.com

MULTIPROCESSOR MEMORY ORGANIZATIONS 167

A write-in, write-back or copyback strategy is based on the restriction that to
write a line, the line must be privately cached by the writer. During a write to a
shared line, the processor first arbitrates for the bus. After getting control of the
bus, it places the address and an invalidation command on the bus. The line is
then updated locally and marked private. Shared copies can simply be
invalidated, and need not be copied back, because they cannot be dirty. Private
lines may be dirty, and require copyback either on request from another cache or
by natural replacement. The write-through scheme can also produce dirty lines,
depending on the policy concerning writes to non-shared lines. For example, the
Firefly computer uses write-broadcast on shared lines and write-in on non-shared
lines [3].

5.2.2. Locking in Broadcast Caches

An interesting operation to analyze for the two broadcast schemes is the use
of locks to protect data structures from two or more processors racing to update.
Locks are frequently used, in PW AM and other architectures, to protect process
management structures. The following discussion [7] serves two purposes. Its
first purpose is to indicate that the two coherency protocols implement locks
efficieIitly, i.e., without generating excessive memory traffic. Its second purpose
is to compare the efficiency with which the two protocols implement locks.

A lock is a single location which one of several processes can set (e.g., to
one). The locked-out processes continue to read the lock, waiting for the lock to
be released (e.g., to zero). This type of read loop is called a busy wait. When the
lock is released, the waiters race to set the lock for themselves. Each busy wait
loop surrounds a read-modify-write operation intended to set the lock. The read
modify-write operation is an atomic action, i.e., it commands the bus for the
duration of its execution. Thus only one read-modify-write can be executing in
the entire system at anyone time. If several busy wait loops are entered
concurrently, more than one read-modify-write may be attempted, but only one
will get control of the bus. The others will be aborted and retried. For write
through, a successful read-modify-write (Le., one that passes the read test) issues
a write on the bus. For write-in, a successful read-modify-write issues an
invalidation command on the bus. An unsuccessful read-modify-write releases
the bus immediately.

A processor busy waiting for a lock continually reads a copy of the lock
(with a value of one) in its cache. For the write-through policy, when the lock is
unlocked by another processor, the zero is written to all caches having a copy of
the block. A waiting processor then reads the zero during its next busy wait

www.manaraa.com

168 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

iteration, and initiates a read-modify-write in an attempt to set the lock. Races
between concurrent attempts to set the lock are naturally resolved because the
read-modify-write operation is atomic, commanding the bus for the duration of
the action. The winner's read-modify-write checks that the lock still has a zero
value (which it does) and sets the lock to one, writing through to all caches
having a copy of the block. Subsequently, a processor which already issued a
read-modify-write, checks the set lock in the read part of the read-modify-write
and aborts its actioD. The processor then resumes busy waiting. A waiting
processor which did not yet issue a read-modify-write, avoids issuing one
because it reads the set lock in its cache.

For the write-in policy, when the lock is unlocked by a processor, the block
is invalidated in all remote caches having a copy of the block. A waiting
processor then takes a cache miss for the lock read request made during its next
busy wait iteration. The cache block is fetched and the busy wait loop continues
as before. If the value is zero, the waiting processor initiates a read-modify-write
in an attempt to set the lock. Again, races are resolved by virtue of read-modify
write's atomicity. If the read-modify-write read value is one, the waiting
processor resumes looping. Note that it is important in this scheme that upon a
miss, a cache enter the target address in its address translation directory, in
anticipation of a possible invalidation of the target before the miss is serviced.

The cost complexity and performance of busy wait under assumptions of the
two policies appears to be equal because waiting processors need not reference
shared memory within their busy wait loops. The write-in policy is slightly less
efficient than the write-through policy because all waiting processors must
service cache misses when the lock is released. For the PW AM model, this
overhead is not significant because multiple processors rarely wait for the same
lock. Recall, from Section 3.5, that busy waiting is used in the PW AM model by
parent processes which are waiting for all their parallel goals to complete. The
alternative policy, of switching out a waiting parent process for a runnable
process, was not modeled because it would be less efficient for the simple
benchmark measured.

5.2.3. Hybrid Cache Coherency

A new proposal for a coherent cache scheme targeted for RAP-Prolog is
described in this section. The objective of this scheme is to combine the
simplicity and low cost of a traditional write-through cache, with the efficiency
of a write-through broadcast cache. The proposed cache is called a hybrid or
partial write-through cache, because certain types of data are written-through

www.manaraa.com

MULTIPROCESSOR MEMORY ORGANIZATIONS 169

and others are copied back. The basic idea is that shared memory is kept
consistent with the caches by writing-through a certain subset of all write
references, and that cache-to-cache consistency is kept by write-broadcasting a
certain subset of all written-through references. The hybrid cache protocol and
its motivations are developed in detail in the remainder of this section.

As summarized in Table 2-7 (Section 2.3), objects in the PW AM storage
model can be categorized as local and global. Within a given process's storage
segment, local objects can only be referenced locally, i.e., by that process.
Global objects, however, can be referenced both locally and globally, i.e., by
other processes (possibly running on other processors). Thus writes can be
categorized as both local and global. Whether a write reference issued by some
PW AM instruction is local or global, is known statically because the instructions
manipulate the storage model in a regular and highly structured manner. The
host therefore can easily determine which write references are local and which
are global.

To keep shared memory consistent with the caches, the following policy is
used. Local references are copyback managed by the hybrid cache. Global
references, except for communication references (Goal Stack and Message
Buffer references), are write-through managed. It has been determined here that
the communication references have little locality, so that making them non
cacheable does not significantly affect memory traffic. The capability of the
hybrid cache to copyback, write-through or bypass the cache for individual
references is similar to that of the Clipper machine [25] (although the
consistency protocol is not similar to that of Clipper). In the Clipper architecture
each virtual memory page is marked as copyback (write-in), write-through, or
non-cacheable. The hybrid cache model allows each individual reference, as
marked by the host, to be similarly treated.

Write-broadcast is used to guarantee cache-to-cache consistency; however,
unlike previously proposed write-broadcast schemes, no access status is kept for
each cache line, thus reducing complexity and cost. Various access status
protocols were developed over the past years with the primary goal of reducing
consistency traffic. The hybrid cache reduces consistency traffic by write
broadcasting only a small subset of all write references. This reduction in traffic,
without status, is possible because of some sympathetic attributes of Prolog and
RAP-Prolog, as described below.

The traditional problem of multiple, concurrent writers for a shared line is
greatly reduced by RAP-Prolog. Two processes can safely write to their own
copy of a shared line, each updating the other. The writes are guaranteed by
RAP-Prolog to update different words within the same line. Races can still
occur, however, at the level of process management. To prevent this, locks are
still needed to protect process management data structures.

www.manaraa.com

170 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

Prolog can be viewed as a single assignment language because within a
clause containing only determinate goals, logical variables can be bound only
once. In clauses with nondeterminate goals, logical variables may be bound and
then rebound due to backtracking. Writes are comprised of:

• structure creation writes (creating structure on the top of the heap)

• binding writes (binding a previously unbound variable)
• unbinding writes (during detrailing upon failure)

• bookkeeping writes (e.g., creating choice points)

• process management writes (e.g., signaling the completion of a
process)

In PW AM, a processor need only broadcast a subset of those global writes
that are written-through: (un)binding writes (Le., both bindings and unbindings),
and global Parcall frame writes. Communication writes (to Goal Stack and
Message Buffer) need not be broadcast because they are chosen to be non
cacheable. Heap writes during structure creation (on the top of the heap) need
not be broadcast because newly created structure cannot be shared. Note that this
optimization is akin to filtering methods first proposed by Censier [15].

It should be stressed that in the proposed broadcast schemes of the previous
section, invalidates or writes-throughs are performed only if the line's access
status indicates to do so. This greatly reduces the amount of traffic, but implies
that shared memory and local memories are not necessarily consistent at all
times. Therefore, a read miss may have to be serviced from another local
memory. An underlying tenet of the hybrid cache scheme is to avoid this
complexity by keeping shared memory consistent with local memory. The cost
of this is the traffic required to write-through a subset of the processor write
requests. As discussed above, to maintain consistency between local memories
requires broadcasting a subset of the write-throughs.

writes CHAT PLM QC1 ILl
trails 51082 14156 22685 4599
bindings 77478 29616 45602 12963
unbindings 49279 8213 9466 3512
heap+perms 192245 147676 160226 83694
writes 700422 717946 647358 300950
I-trails/bindings 0.34 0.52 0.50 0.64
1-(heap+perms)/writes 0.73 0.79 0.75 0.72
1-(un) bindings/ (heap+ perms) 0.34 0.74 0.66 0.80

Table 5-1: W AM Binding Statistics

www.manaraa.com

MULTIPROCESSOR MEMORY ORGANIZATIONS 171

The optimization of broadcasting only a subset of write-throughs is
beneficial only if broadcasts have a significant cost. Otherwise, requests selected
for write-through to shared memory are simultaneously broadcast. Since the
caches spy on the shared memory bus, a broadcast itself does not cost more than
a write request. However, each cache must check a broadcast address. If the
cache address translation directory does not have a dedicated port for this check,
unnecessary broadcasts incur overheads.

Table 5-1 shows the W AM binding statistics. The binding operation is
combined with a trail test, necessary to implement backtracking. The number of
trail writes is therefore less than (or equal to) the number of binding writes.
During failure, an unbinding occurs for each trailed binding, with the following
exceptions. As described in Section 3.4, an "inverse trail test" is used to reduce
the number of unbindings. In addition, if choice points remain after the program
completes, trailed bindings may remain (that were never unbound). Also shown
are the number of writes to the heap and to permanent variables (heap+perms),
i.e., the number of write-throughs. Lastly, the total number of writes is given.

Three efficiency statistics are presented in Table 5-1, calculated from the
ratio of trailed bindings (trails) to bindings, write-throughs (heap+perms) to
writes, and (un)bindings to write-throughs. The first statistic indicates the
efficiency of the trail test. Notice that CRA T is least efficient, requiring the most
trails, a result of its nondeterminacy.

The second statistic approximates the write-through efficiency in the hybrid
cache, although PW AM will be less efficient because of additional global
references. About 25% of all writes (and 12% of all data references) require
write-through. For traditional sequential architectures, similar optimizations can
be used to reduce write traffic for maintaining consistency. Mulder [55] reports
that approximately 25% of data references in typical Pascal programs are to
potentially shared objects and that 25% of data references are writes. Therefore
about 6% of all data references require write-through.

The third statistic approximates the broadcast efficiency. From 20% to 66%
of the write-throughs require broadcast. Again, CRA T is least efficient. Note
that in the simulation results presented in Section 5.3, the model assumes that
shared memory update and write-broadcast proceed concurrently. Thus the
previous optimization of broadcasting only a subset of write-throughs is not
needed in the simulator because no additional overheads are incurred for
broadcasts (e.g., contention for cache directory access, as previously mentioned).

www.manaraa.com

172 MEMORY PERFORMANCE OF PROLOG ARCHrl'ECTtlRES

5.3. Coherent Cache Measurements

The various solutions to the consistency problem for RAP-Prolog executing
on a shared memory multiprocessor with local memories are discussed in the
previous section. These coherent local memory designs include:

• traditional write-through cache
• write-in broadcast cache (invalidates remote copies on write)

• write-through broadcast cache (updates remote copies on write)

• hybrid cache
Efficiency measurements of the above designs are now presented and

analyzed. The models were simulated executing the Sderiv benchmark
presented in Section 3.5. Recall that Sderiv is a synthetic version of Warren's
symbolic differentiation benchmark. It is hypothesized that the Sderiv behavior
under these models resembles that of larger benchmarks. If this is true,
conclusions drawn in this section can be extrapolated to RAP-Prolog programs in
general. The Sderiv benchmark accurately models parallel programs that do not
require the expensive evaluation of CGE conditions at runtime. The benchmark
represents programs wherein parallel goals do not manipulate a large number of
terms passed by the parent. Conversely, the Sderiv benchmark does not
accurately model programs with frequent evaluation of complex CGEs and
extensive unification of passed structures. The Sderiv experiments allow, at the
very least, comparisons between alternative coherent memory designs.

Consider the evidence that shows that Sderiv behavior resembles that of
larger benchmarks. In Section 3.5 it is shown that sequential Sderiv displays the
referencing characteristics of the large W AM benchmarks. The local memory
characteristics of sequential Sderiv and the large W AM benchmarks are
compared in Figures 5-2 and 5-3. These figures show the performance of a four
word line data cache (throughout this chapter, only four word line, write-allocate
data caches are considered - in general, two word lines offer slightly lower
traffic). For these copyback data caches, Table 5-2 gives the number of standard
deviations the hit and traffic ratios of Sderiv are from the mean statistics of the
large W AM benchmarks. The Sderiv benchmark fits rather well, conservatively
biased to lower hit ratios and higher traffic ratios. Again, one cannot confidently
extrapolate the parallel behavior of the large benchmarks from Sderiv alone. A
close fit ensures that the programs exercise the sequential storage model (the
foundation of the PW AM storage model) in a reasonable, typical way.

All of the coherent cache models are simulated with the same parameterized
multiprocessor cache simulator. As in the copy back cache simulator, each
private cache is categorized by a number of blocks of a given size (in words).

www.manaraa.com

MULTIPROCESSOR MEMORY ORGANIZATIONS 173

1.00

0.95

-e- CHAT
0

~ 0.90
... PLM .. OC1

...-
:E ... III Sderiv

0.85

0.80

64 128 256 512 1024
cache size in words

Figure 5·2: Sderiv Fit: D-Cache (4 word line) Hit Ratio

1.00

0.80

0 0.60
.~

()

-e- CHAT ... PIJv'I .. OC1
l§ 0.40 ... III
!:> Sderiv

0.20

0.00

64 128 256 512 1024
cache size in words

Figure 5·3: Sderiv Fit: D-Cache (4 word line) Traffic Ratio

www.manaraa.com

174

cache size
(words)

64
128
256
512

1024

MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

large benchmarks
crhr crtr
0.0272 0.191
0.0134 0.0886
0.0103 0.0549
0.0103 0.0626
0.0082 0.0569

Sderiv
(hr-Ehr)/crhr
-0.04
-0.6
-1.2
-0.6
-1.6

Table 5-2: Fit of Sderiv to Large Benchmarks

(tr-Etr)/crtr
0.4
1.0
1.7
1.1
2.0

Each cache is modeled as a fully aSSOcIatIve memory with perfect LRU
replacement. The simulator is reconfigurable to support the various consistency
protocols. The simulator processes trace records sequentially, using the cache
corresponding to the record's processor identifier. Cache consistency is
maintained for each reference. The simulator models a system with no cache-to
cache transfer capability. Therefore in the broadcast models, if the most up-to
date version of a miss target is held by a remote cache, the line is first copied
back to memory, and then transferred to the requesting cache.

A modified copyback cache simulator (derived from the DELCACHE
program [2]) is also used to model sequential hybrid and write-through caches.
This simulator estimates the effect of these consistency mechanisms on the large
sequential benchmarks. The measurements account for the W AM component of
PW AM, but lack the consistency and communication overheads.

Consider write-through and hybrid cache performance of the sequential
benchmarks introduced in Chapter 3. Figure 5-4 shows write-through, hybrid,
and copyback data cache traffic ratios. All write references to the heap and to
permanent variables in the environments are written-through, whereas all other
write references are copied back. The hit ratios of the write-through and hybrid
caches are identical to those of copyback caches of the same size and block size
(Figure 4-10). These measurements indicate that the hybrid cache generates
significantly less traffic than the write-through cache. Note that the hybrid traffic
is approximately the same as that of a copyback cache.

Figures 5-5 and 5-6 show the Sderiv traffic ratios of the write-in broadcast
cache, hybrid cache, and write-through cache, with four word lines. The write
broadcast cache statistics (not shown) are almost identical to those of the write-in
broadcast cache. This indicates that communication traffic is very low (as is
apparent from Table 3-17).

Figure 5-5 shows families of curves corresponding to numbers of PEs,
plotted as a function of total local memory size (i.e., the sum of the individual PE
cache sizes). Figure 5-6 redisplays this data, showing families of curves

www.manaraa.com

MULTIPROCESSOR MEMORY ORGANIZATIONS 175

1.2
write-through data cache

1.0

0 0.8

~ 0.6 CJ

-Go 2 word block
- 4 word block

~
~ 0.4 - - 8 word block

0.2

0.0
64 128 256 512 1024

cache size in words
1.2

hybrid data cache
1.0

0.8
0

~ 0.6
CJ

~ 0.4

0.2

0.0
64 128 256 512 1024 words

1.2
copyback data cache

1.0

~
~

0.8

CJ 0.6

~ 0.4

0.2

0.0
64 128 256 512 1024 words

Figure 5-4: Data Cache Traffic Ratios: Sequential Benchmarks

www.manaraa.com

176

0
~ ...
(J

!E
E!! -

0

~ ...
~
E!! -

0

N
(J

!E
E!! -

MEMORY PERFORMANCE OF PROLOG ARCHITECI'URES

1.0

0.9 write-in broadcast
0.8

0.7 -£to 1 PE
0.6 ... 2PE

4PE ...
0.5 ... 8PE

0.4

0.3

0.2
64 128 256 512 1024 2"11 2"12 2"13

total cache size in words
1.0

0.9

0.8
hybrid

0.7

0.6

0.5

0.4

0.3

0.2
64 128 256 512 1024 2"11 2"12 2"13 words

1.0

0.9
write-through

0.8

0.7

0.6

0.5

0.4

0.3

0.2
64 128 256 512 1024 2"11 2"12 2"13 words

Figure 5-5: Sderiv Traffic Ratios of Coherency Schemes
for Varying #s of PEs

www.manaraa.com

MULTIPROCESSOR MEMORY ORGANIZATIONS

0 e
(.)

~
!::

0
.~

(.)

~

0

~
"-
(.)

~

1.0
write-in broadcast

0.9

0.8

• • ..
0.7 •
0.6 -Go 1024 word 512 word
0.5 .. 256 word

-0- 128 word 0.4 - 64 word
• • • 0.3

0.2
0 2 4 8

number of PEs
1.0

0.9 hybrid
• • • •

0.8

0.7

0.6

0.5 • • • •
0.4 • • • • III III I!F -iii
0.3

0.2
0 2 4 8 PEs

1.0

0.9 • • • •
0.8

0.7 • • • • • III III •
0.6

0.5
writ e-through

0.4

0.3

0.2
o 2 4 8 PEs

Figure 5-6: Sderiv Traffic Ratios of Coherency Schemes
for Various Cache Sizes

177

www.manaraa.com

178 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

corresponding to individual PE cache sizes, plotted as a function of numbers of
PEs. The curves in Figure 5-6 are almost flat, indicating that communication
overheads do not increase significantly with increasing numbers of PEs. When
increasing from four to eight PEs, some increase in overhead, corresponding to
indiscriminate spawning of trivial processes, is detected. In addition, the
benchmark's working set is almost completely contained within caches of 512
words or greater.

The hybrid cache generates an amount of traffic between that generated by
the broadcast and write-through caches. Of course, benchmarks doing more
communication must be measured to further compare the schemes. Eight PEs
with write-in broadcast caches of 512 words or greater generate a traffic ratio of
about 0.30. Although for the caches analyzed this is the least traffic generated, it
is still high (recall, from Section 4.2.4, that the W AM programs display a traffic
ratio of 0.16 for a four word line, 512 word data cache). Experiments with
greater numbers of PEs were not conducted because of the limitation of the
simple benchmark.

In summary, the RAP-Prolog benchmark analyzed shows slightly increasing
communication overheads with increasing numbers of PEs. For large caches, the
hybrid scheme was shown to approach the performance of the broadcast
schemes, as the number of PEs increase, under the conditions of low
communication traffic. For small caches, the broadcast schemes retain a
significant advantage. For a large number of PEs (eight), even the best cache
scheme generates a significant amount of traffic. This traffic can be reduced by
avoiding the spawning of trivial processes.

5.4. Shared Memory Design

In this section, queueing models are used to analyze the performance of the
interleaved shared memory and bus in the previous multiprocessor systems.
Both hybrid cache and write-in broadcast cache systems are modeled as
extensions of those queueing models developed in Section 4.5. Queueing
analysis is an important tool for multiprocessor design because it can provide a
valid estimate of the contention between PE requests for memory modules and
the bus.

www.manaraa.com

MULTIPROCESSOR MEMORY ORGANIZATIONS 179

5.4.1. Shared Memory and Bus Queueing Models

The shared memory model considered here consists of simple memory
modules of the type described in Section 4.5. Recall that each module can
deliver a physical word in Ta cycles and that the module can be reaccessed after
at least T c cycles. This type of memory module does not offer as high
performance as, for instance, a memory bank, which is itself interleaved. Higher
performance models may include a two-level local memory for each processing
element. These local memories may be transparent to the architecture, i.e., are
paged out to a very large shared memory. Another option is to page the second
level local memories directly to disk, dedicating one local memory to hold shared
data.

For most applications, a shared memory multiprocessor without local
memories is of little interest because memory traffic is excessive. In a
uniprocessor model (Section 4.5.3), a single processor makes requests (i.e.,
customers) of an interleaved memory (i.e., server). This memory can be modeled
as a single server even though it is interleaved, because of two approximations.
First, the arrival rate of individual (word) requests is scaled by the inverse of the
interleaving factor. Second, the service time to transfer a block (on a miss or
copyback) is calculated assuming a burst mode transfer. The effect of waiting
for a local memory miss, when no further customers can arrive, is approximated
by decreasing the service time by T dead'

A key point in the uniprocessor main memory model is that the processor
must wait for a read miss to be serviced, i.e., the processor stalls. In a
multiprocessor, however, although a given PE stalls for a read miss, other PEs
may not be stalled. One method of modeling this is with a multiple server. A
simpler method is to use a single server model, as in the uniprocessor case, with a
scaled T dead heuristic. Again, misses are approximated as occurring uniformly
across the memory modules. For a block size of L buswidths and interleaving
factor m, the maximum number of concurrently serviced miss requests is miL. A
single server can be used by scaling the miss request (block) arrival rate by the
inverse of miL. Abstractly, the model views the system from a single set of L
modules that together service line requests.

In the previous sections, various local memories compatible with PW AM are
introduced. Certain types of local memories are discussed which have no
consistency problems. These include a choice point buffer, instruction buffer,
and instruction cache. In addition, local memories which guaranteed consistency
via special protocols are analyzed: a traditional write-through cache, write-in and
write-through broadcast caches, and hybrid caches. In the next sections two
main memory models are presented: a system with local hybrid caches and a

www.manaraa.com

180 MEMORY PERFORMANCE OF PROLOG ARCHITEcrURES

system with local write-in broadcast caches. Both types of caches use write
allocation policies.

Hybrid Cache System

The details of the hybrid cache simulations, presented in Section 5.3, are first
reviewed. Communication references (Goal Stack and Message Buffer
references) are assumed to be non-cacheable and are thus accounted for in a
higher miss ratio. Other global write references are written-through.
(Un)binding writes and global Parcall frame writes are broadcast. Writes to
shared lines cause remote copies to be updated.

A review is now given of an open M/GIl model for a pure write-through liD
cache [28], from which the hybrid model is derived. On a miss, a write-through
cache fetches a line (assuming write-allocate), but does not copyback the
replaced line, because it cannot be dirty. The arrival rates of misses and write
throughs are modeled as independent Poisson processes, with independent
service times. The effect of interleaved memory is incorporated into the write
through arrival rate, AI' the miss arrival rate, "-2, and the miss service time, T 2'
For calculation of Al and "-2, it is assumed that the write-throughs and misses,
respectively, are uniformly distributed across the memory modules. For
calculation of T 2' it is assumed that the line size, L, is less than or equal to the
number of memory modules, m. The model here assumes multiple processing
elements (PEs), hence the factor of n, the number of PEs, in the arrival rates.

where

Al = n*Aw/m

A2 = n*Anuss *Um

TI =Tc

T2 = TIine = max(Ta + (L-l)Tbus,Tc)

'1 . =MR*l
"nnss '"

Awt = WT*J".
Recall that Ap is the PE request rate and MR is the PE miss ratio. WT is the
write-through ratio. Processor stalling is not modeled above; however, stalling is
incorporated into the hybrid model below with Tdead. Several other points
should first be noted. This model views the system from a group of L modules,
assuming the interconnection network does not degrade the system bandwidth (a
bus is modeled independently, later in this section). The arrival rate of line

www.manaraa.com

MULTIPROCFSSOR MEMORY ORGANIZATIONS 181

misses are scaled, assuming multiple misses can be serviced concurrently and
that misses are uniformly distributed across the modules. As a result, the
detrimental effect (that of increasing memory traffic) caused by increasing n can
be removed by increasing m.

In comparison to a pure write-through cache, a hybrid cache contains both
copyback lines and write-through lines. Copyback lines may be dirty, in which
case they must be copied back during replacement. Write-through lines are never
dirty because writes to them are written through. The hybrid cache queueing
model presented here assumes that all types of references are cached, in order to
simplify the equations. The measurements presented in this section, however,
were generated assuming that communication references are not cached.
Instructions are captured in a separate I-cache, assumed to have the same line
size as the data cache. The previous MlGIl write-through cache model is
extended for the hybrid by splitting A2 into two streams: A2a and A2b. The ~a
stream approximates miss requests that stall the issuing processor until the
requests have been serviced. The ~b stream approximates miss requests that do
not stall the issuing processor.

where

~a = n*Astau*L!m

~b = n*"-nostau*L!m

T2a = max(Ta+(L-l)Tbus,Tc) - aTdead

T2b = max(Ta+(L-l)Tbus,Tc)

Astall = MRr *\.

Anostall = MRw*Aw + MR*Ap*DR.
In the above equations, MR is the miss ratio of a PE, split into MRr, the read
miss ratio and MRw' the write miss ratio. The input request stream, Ap' is split
into AI"' the read miss requests, and Aw' the write miss requests. Note that DR,
the dirty line ratio, is lower than in the copyback cache. Also, WT, the write
through ratio, is lower than in the pure write-through cache. Both DR and WT
are measured with the hybrid cache simulator. Miss ratio, uneffected by write
strategy, is identical for both the hybrid and copyback caches.

The T dead heuristic, used to model processor stalling as in Section 4.5.3,
includes a scale factor, a, in the multiprocessor model. a reflects the fact that
not all PEs are stalled during a given read miss request. a = 1 represents all PEs
stalling and a = lin represents only the given PE stalling. In general a falls
between these two values:

www.manaraa.com

182 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

a = (1 + E(# additional PEs stalled at any time»/n.

The expected number of additional PEs stalled at any time is calculated with a
binomial distribution in Pr(stall), the probability that a PE is stalled. Therefore

a = (1 + (n-l)Pr(stall)/n.

Pr(stall), estimated assuming no miss penalty, ranges from about 0.05 to 0.10 for
the cache sizes considered in the next sections. a ranges from about 0.5 to 0.2
for two to eight PEs. In other words, a reduces the effect of T dead for large
numbers of PEs. In fact, for large numbers of PEs, the results presented here are
approximately the same as those calculated assuming no stalls, i.e., a = O.

An asymptotic MlG/l model is derived for three arrival streams in a manner
similar to that of Section 4.5.3 (Equations (4.5) - (4.12»). Recall that the shared

memory bandwidth efficiency, Smem' is defined as

Smem = Pa/p,

where P is the open queue occupancy and Pa is the asymptotic occupancy.
Recall that processor performance degradation is defined (Equation (4.13») as

D = (P actual - P no-miss)/P actual' 0 ~ D ~ 1

where P no-miss is the PE performance (in cyc1es/instr) assuming no local memory
misses and P actual is the PE performance accounting for local memory read
misses which stall the processor.

A single bus is chosen for the multiprocessor model considered in this book
because it is required by the coherent cache protocols studied for implementing
locking. The bus model is simple and can be extended by adjusting the bus cycle
time, Tbus' For instance, a faster bus can be modeled by decreasing Tbus' Of
course, a single bus interconnect cannot be used in a parallel system of arbitrary
size; however, it is a reasonable organization for a tightly-coupled PW AM shared
memory mUltiprocessor with a limited number of high-speed PEs, as is modeled
here.

In contrast to shared memory queueing model, the bus arrival rate cannot be
scaled by the number of modules, so that the detrimental effect (that of
increasing memory traffic) caused by increasing numbers of PEs cannot be
alleviated. In other words, a single bus is burdened by the total system traffic. If
the bus is not extremely fast (Tbus/Tc«I), it becomes saturated by a few PEs. In
the measurements presented in the next section, T bus/Tc = 0.2 is initially chosen.
Later measurements of bus efficiency are presented relaxing this assumption.
The standard asymptotic model is derived as in Section 4.5.2, with

Abus = m(AI +A.za+A2b)·

Note that since the simulator assumes that broadcasts and write-throughs occur
simultaneously, coherency traffic is hidden in Awt (a component of AI)'

www.manaraa.com

MULTIPROCESSOR MEMORY ORGANIZATIONS 183

Broadcast Cache System

A shared memory queueing model for a write-in broadcast cache system is
described here in terms of modifications to the hybrid cache model of the
previous section. The two queueing models are similar with the following
exceptions. Recall from Section 5.2.1 that write-in broadcast caches do not
generate write-through traffic, but retain consistency rather by issuing line
invalidations. Invalidation traffic, Ainv' is not included in the shared memory
queueing model because it is directed from one PE to another, not to shared
memory. Unlike the hybrid cache, the write-in broadcast cache generates an
additional stream of forceback traffic due to the invalidation of dirty lines. Note
that a forceback does not stall the associated processor. The M/G/l shared
memory queueing model for the write-in broadcast system is the hybrid model
with the Al stream (for write-throughs) removed. In addition, the definition of
Anostall is appended with forceback traffic,

Anostall = MRw *Aw + MR*Ap *(DR+FB).
Definitions of all parameters in this model are the broadcast cache equivalents of
the corresponding parameters in the hybrid model. FB, the forceback ratio, is the
ratio of forcebacks to shared memory requests. Note that forcebacks are
essentially premature copybacks. The dirty line ratio, DR, of a write-in broadcast
cache is significantly greater than that of the hybrid cache because the broadcast
caches do not write-through and therefore collect a large percentage of dirty
lines. The miss ratios of the broadcast and hybrid caches are identical.

The bus queueing model for the write-in broadcast cache system is the
standard asymptotic model of Section 4.5.2 with

Abus = meAl +"-2a+"-2b)'
where A2a and A2b are as previously defined and

Al = n*"-inylm.

5.4.2. Measurements

Performance measurements of the shared memory and bus queueing models
are now presented. Assumed throughout is a local instruction cache of one
fourth the size of the data cache, with equal line size. Also assumed are L = 4
words, T a = 3 cycles, and Tc = 5 cycles. Initially, a two word bus is assumed
with T bus = I cycle.

Figures 5-7 and 5-8 show the statistics for 16-way and 32-way interleaved
shared memories, respectively. The bus bandwidth efficiency, shared memory

www.manaraa.com

184 MEMORY PERFORMANCE OF PROLOG ARCHITECI'URES

1.0 Bus Efficiency
II)
:s
.0 0.9 >JJ'

I

(:;' O.B
c

1 PE Q) 0.7 -Go
·0 ... 2PE := 0.6 -4PE Q)

.s::. BPE -u 0.5

.~

"0 0.4 c
ell
.0

0.3
256 512 1024 words

data cache size in words

~ 1.00 -
Shared Memory Efficiency

E ...r.o
>JJ' 0.95 -I

(:;' • • 0.90

-------c
Q)

0.B5 ·0 .. Tc = 5 cycles
:= O.BO Ta = 3 cycles Q)

.s::. .-0 Tbus = 1 cycle
~ 0.75 ---- L = 2 buswidths
.~

0.70 buswidth = 2 words
"0 .----c
ell 0.65 .0

0.60
256 512 1024 words

14
Performance Degradation

c 12

c
10 0

fii
~ B
C)
Q)
"0
~ 0 6

4
256 512 1024 words

Figure 5-7: Hybrid Cache System With 16-Way Interleaving

www.manaraa.com

MULTIPROCESSOR MEMORY ORGANIZATIONS 185

(/)
:0
.0

"'f
>.
()
c
Q)

'(3
~
Q)

.s::
-t5
';:
'0 c
(1j
.0

>.
()
c
Q)

'(3
~
Q)

.s::
15 .§:
'0 c
(1j
.0

Q

c
0

~
'0
~
Cl
Q)
'0
~ 0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

14

12

10

8

6

4

Bus Efficiency

-Go 1 PE 2PE ... 4PE 8PE

256 512 1024 words

data cache size in words

Shared Memory Efficiency
.. .. EI

• • • ----- Tc = 5 cycles ----
256 512

Performance Degradation

256 512

Ta = 3 cycles
Tbus = 1 cycle
L = 2 buswidths
buswidth = 2 words

1024 words

1024 words

Figure 5-8: Hybrid Cache System With 32-Way Interleaving

www.manaraa.com

186 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

bandwidth efficiency, and percent performance degradation are given as
functions of cache size. Recall that the shared memory efficiency and
performance degradation statistics are calculated independently of the bus
efficiency, assuming a perfect interconnection network. Also recall that these
efficiency statistics are calculated assuming a peak request rate, whereas the
performance degradation is calculated assuming a typical request rate.

The primary hybrid cache result is that even with very few processors, the
bus saturates. As the number of PEs increases, bus efficiency decreases at
approximately the same rate, i.e., doubling the number of PEs halves the bus
efficiency. A secondary result is that shared memory efficiency, assuming
sufficient bus bandwidth, is reasonable, falling to 67% for 8 PEs with 256 word
caches. Percent performance degradation is less than 7% for 1024 word caches
and interleaving factors of 16 or greater. Increasing 16-way to 32-way
interleaving significantly improves memory efficiency. For 8 PEs with 1024
word caches, ~mem increases from 0.77 to 0.88, a 14% improvement. As
interleaving increases, performance degradation decreases. As can be seen in
Figures 5-7 and 5-8, and surmised from the queueing equations, the effect of
doubling interleaving can be approximated by simply relabeling the ~mem and
~bus curves in Figure 5-7 with twice the number of PEs. Halving the bus cycle
time, TbUS' has the same effect on the bus efficiency, ~bus. For example, for 8
PEs with 1024 word caches, halving T bus from 1.0 to 0.5, increases ~bus from
0.45 to 0.65, a 44% improvement.

The previous results assume a sustained peak burst reference rate. If an
arrival rate compatible with the actual PE performance is used, the metrics
improve somewhat. For instance, assuming Ap = 0.46 words/cycle, 8 PEs with
1024 word caches and 16-way interleaving gives ~bus = 0.52 and ~mem = 0.82.
These constitute improvements (over the statistics generated with a peak of
A.p = 0.6 words/cycle) of 15% and 6% respectively. For 32-way interleaving, the
reduced input rate increases ~mem to 0.91, an improvement of only about 3%
over a peak rate system. These perturbations indicate that the model is stable
around the sustained peak request rate.

Figures 5-9 and 5-10 show shared memory bandwidth efficiency and percent
performance degradation as a function of the number of PEs for families of
curves corresponding to interleaving factors. Note that these curves do not
represent realistic models for all numbers of PEs shown. For example, a
PWAMJW AM uniprocessor probably cannot sustain 16 simultaneous memory
requests (line = two buswidths) and therefore 32-way interleaving is unrealistic.
For 8 PEs, 32-way interleaving corresponds to about two outstanding memory
requests per PE, a reasonable assumption. These limitations do not suggest that a
tightly-coupled mUltiprocessor need not implement a highly interleaved memory.

www.manaraa.com

MULTIPROCESSOR MEMORY ORGANIZATIONS

1.0
E
'" E 0.9 >JJ'

0.8
>.
0
c:

0.7 -Go 4-way (])

'0 8-way
:i: 0.6 16-way (])

.s= 32-way
'6 .§ 0.5
'0 c: 0.4 co
..c

0.3

2 4 8
number of PEs

Figure 5·9: Memory Efficiency: 1024 Word Hybrid Cache System

Cl

c:
0

~
'0
~
OJ
(])
'0

'#.

10

9

8
-&

7 ..-...
6 ...
5

4

2 4 8
number of PEs

Figure 5·10: Percent Performance Degradation:
1024 Word Hybrid Cache System

4-way
8-way
16-way
32-way

187

www.manaraa.com

188 MEMORY PERFORMANCE OF PROLOG ARCHITECI'URES

The limitations are only in the interpretation of the queueing model results - the
model cannot accurately analyze an interleaving factor much greater than the
number of PEs. One method of utilizing a larger number of memory modules is
to increase the cache block size. The success of such a strategy is contingent on
a sufficiently fast bus.

For the particular selection of parameters used in this example, increasing
the bus capacity is essential. Figures 5-11 and 5-12 show the bus efficiency as a
function of T buslT C' the ratio of bus cycle time to memory cycle time. ~bus is
given for both families of cache sizes (assuming 8 PEs) and numbers of PEs
(assuming 1024 word data cache configurations). Assumed throughout is Tc = 5
cycles. Figure 5-11 indicates tradeoffs between cache size and bus capacity to
retain constant bus efficiency. For example, the slowest bus (Tbus = 1 cycle),
configured with 1024-word data cache PEs, has about the same bus efficiency as
a bus 50% faster (Tbus = 0.75 cycles), configured with 512-word data cache PEs.
Figure 5-12 indicates that in systems with larger numbers of PEs, bus efficiency
degrades more rapidly with decreasing bus capacity, than in systems with smaller
numbers of PEs.

The slowest bus presented is representative of current, conservative
technology assumptions. The current generation Sequent achieves a peak bus
bandwidth of 32 Mbytes/sec, with TbuslTc "" 0.1. The buses modeled here
achieve a peak bus bandwidth of 40 Mbytes/sec for a similar 100 nsec cycle
single word bus (the difference is partially due to the assumption here of a
separate address bus). For a two word wide bus, 80 Mbytes/sec is achieved.
More expensive systems can likely achieve bus capacities in the range of
TbuslTc = 0.10 to 0.05. For instance, the Pyramid achieves a peak bus
bandwidth of 100 Mbytes/sec, and the Cydra-5 achieves 200 Mbytes/sec [5].

Another method of improving system performance is the use of more
sophisticated local memories. Broadcast caches are shown in Section 5.3 to have
superior traffic characteristics to hybrid caches. Figure 5-13 shows the
performance metrics for a write-in broadcast cache system, configured in an
identical manner to the hybrid cache system previously described. Comparison
with Figures 5-9 and 5-10 indicates that the broadcast cache does not
significantly improve shared memory bandwidth efficiency or processor
degradation (recall these metrics are calculated assuming a perfect bus). Note
however that bus efficiency is vastly improved. The broadcast cache reduces the
bus traffic by removing the write-through traffic of the hybrid cache.
Interestingly, the write-through traffic loads the bus to a significantly greater
degree than it loads the shared memory.

www.manaraa.com

MULTIPROCESSOR MEMORY ORGANIZATIONS

I/)
:>
.ll

u.J'

>. u
c::
Q)

'13
:=
Q)

..c:
"6
.~

" c:
CII
.0

I/)
:>
.ll

u.J'

~
c::
Q)

'13
:=
Q)

..c:
~
.~

" c::
CII
.0

1.0

0.9

O.S

0.7 -1024wcache
512wcache

0.6 .. 256wcache

0.5

0.4

0.3
0.00 0.05 0.10 0.15 0.20 TbusfTc

Figure 5·11: Bus Efficiency: Hybrid Cache System
(8 PEs/2 word bus)

1.0

0.9

O.S

0.7 -1 PE 2PE
0.6 ... 4PE SPE
0.5

0.4

0.3
0.00 0.05 0.10 0.15 0.20 TbusfTc

Figure 5·12: Bus Efficiency: 1024 Word Hybrid Cache System
(2 word bus)

189

www.manaraa.com

190 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

Figure 5-13: Broadcast Cache System Performance (2 word bus)

www.manaraa.com

MULTIPROCESSOR MEMORY ORGANIZATIONS 191

5.5. Summary

In this chapter, two-level memory hierarchies are defined and analyzed for a
parallel Prolog architecture. Specifically, the memory performance of the
Restricted-AND Parallel Prolog (PW AM) architecture, executing on a tightIy
coupled, shared memory multiprocessor, is analyzed. Shared memory
multiprocessor consistency problems for PW AM are solved in a variety of ways
- measurements of the memory performance of broadcast, hybrid, and write
through coherent cache schemes are presented. The hybrid cache, a new
combination of write-through and write-broadcast cache designs, takes advantage
of RAP-Prolog attributes to guarantee consistency with moderately low
overheads and inexpensive hardware. The PW AM memory performance
measurements presented here and in Chapter 3 support the PW AM design tenets
- the PW AM displays low communication overheads and efficient sequential
execution.

Queueing models for the multiprocessor's shared memory and shared bus are
developed from the M/G/! models of the previous chapter. Measurements are
presented for two split I+D cache configurations: one with a hybrid data cache
and one with a broadcast data cache. The primary result of the queueing analysis
is that for a multiprocessor with a small number (eight) of high-performance PEs,
buses of insufficient capacity become a performance bottleneck. Consider
systems with a two word bus connecting a shared memory and eight high
performance PEs, each with a 1024 word data cache and 256 word instruction
cache. Assuming TbusITc = 0.2 (current, conservative technology) a hybrid data
cache system achieves 0.45 bus bandwidth efficiency, whereas a write-in
broadcast data cache system achieves 0.84 bus efficiency. Assuming higher
capacity buses, for instance TbusITc = 0.05 (now emerging technology), the
hybrid system achieves 0.80 bus efficiency whereas the broadcast system
achieves 0.96 bus efficiency.

Measurements indicate that both hybrid cache and broadcast cache systems
display approximately the same shared memory bandwidth efficiency and
processor performance degradation, given buses of sufficient capacity. For the
system configurations considered immediately above with 32-way interleaving,
both the hybrid cache and broadcast cache systems exhibit about 6%
performance degradation (6.5% for 16-way interleaving). These results show
that an interleaved shared memory can successfully reduce the miss penalty seen
by an individual PE. Given an advanced bus with bandwidth efficient close to
one, these performance degradations translate into speed-ups of about 750% for
an eight PE system.

www.manaraa.com

6 Conclusions and Future Research

6.1. Conclusions

This book synthesizes logic programming architecture design with the
lessons learned from procedural programming architecture design and memory
organization. The field of logic programming machine design is new. At the
time of the completion of this book, as few as two Prolog machines had the
ability to execute the benchmarks measured here. It is therefore not surprising
that little has been published in the area of logic programming machine
performance. This book helps fill this large gap, but much additional research is
needed because the supply of questions is seemingly endless. The vast store of
knowledge and folklore available about procedural language architectures and
machines is absent for logic programming languages. Therefore, results that are
similar for the two paradigms are just as interesting as results unique to logic
programming.

One of the contributions of this book is the extension of the principles of
canonical machine architectures [27], first developed for FORTRAN, to Prolog.
The Prolog canonical interpretive forms (CIFs) efficiently model extensive use of
dynamic structure creation and pointers, frequent procedure calls, and
nondeterminate execution behavior. Initially a so-called traditional CIF is
developed, based on a very close correspondence with Prolog. The traditional
Prolog CIF assumes a host with an unlimited size stack buffer, in the tradition of
procedural CIFs. Such an assumption is ill-directed for Prolog, however, where
only about 75% of data references are to the stack.

A second CIF is then developed, based on a less expensive host, assuming
only a register set. A two-level name space model is used, consisting of a
register set and environment. The architecture places as many variables in the
registers as possible, using environments only when necessary. It is shown that

www.manaraa.com

194 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

the traditional CIF performs far better than the register-based CIF, reducing
instruction bandwidth by 15% and data bandwidth by 75% on average. The
register-based CIF, however, has the potential to attain higher performance than
the traditional CIF on both minimal hosts and cache-based hosts with register
sets. The Warren Abstract Machine (W AM) model [96] is shown to be an
actualization of a register-based CIF. Consequently, the CIF design paradigm
can be viewed as an informal method of deriving the W AM instruction set. The
W AM model is used throughout the book as a typical Prolog architecture, to
study the memory performance of Prolog benchmarks. The selection of the
W AM is beneficial because it facilities the study of a closely related Restricted
AND-Parallel Prolog architecture.

The Prolog ClFs are introducec as collections of architecture attributes.
Some of the attributes are more completely defined than others. In contrast to
procedural ClFs, the Prolog CIF attributes could only be measured empirically.
Results indicate that the most promising attributes are tight instruction encoding
and ideal indexing. Realizable attributes can be constructed from these, for use
in high-performance instruction sets. For instance, byte encoding of instructions
and indexing on first argument are realizations of CIF attributes. It is important
to develop more efficient implementations of these and other CIF attributes.

The ClFs presented are based on a single clause scope for the definition of
identifiers, a result from the direct cOITespondence with Prolog. This definition
allows simple translation from source to CIF, but does not offer optimal memory
performance. An alternative approach is to relax the cOITespondence, increasing
the size of the scope at the architecture level, e.g., to a procedure or set of
procedures, at the cost of increased compilation complexity. For the traditional
CIF, increasing the scope size would allow tighter encoding of identifiers,
reducing the memory bandwidth requirement. For the register-based CIF, a
larger scope would allow more efficient register allocation and would facilitate
the translation of recursion into iteration. These are important topics for further
research in logic programming language implementations.

A conventional empirical methodology is used in this book to measure the
memory characteristics of the sequential and parallel logic programming
architectures. This methodology consists of a compiler, an emulator, trace
driven memory simulators, and a queueing model analyzer. The contributions of
this portion of the study lay not in the methodology, but rather in the results
collected. At the highest level, shallow backtracking is the primary data-memory
performance bottleneck of the W AM - 46% of dynamic data memory traffic is
devoted to procedure control and failure, as compared to 39% for both general
and specialized unification. This result was unexpected, because the W AM
model is optimized for determinate programs, which do little deep backtracking.

www.manaraa.com

CONCLUSIONS AND FUTURE RESEARCH 195

Shallow backtracking, however, is the result of an "if-then-else" action within a
procedure. Because the compiler is not sophisticated enough to frequently avoid
this behavior, the full penalty (in memory traffic) for backtracking is paid. This
result indicates that a simple (single) choice point buffer could effectively reduce
the data bandwidth requirement. Simulation measurements presented verify this
- for data references, a 12 word buffer offers a miss ratio of 0.55 and a traffic
ratio of 0.62.

These results are promising, but performance is still low. Other local
memories adept at reducing the memory bandwidth requirement are therefore
studied. Envisioning a single chip microprocessor, the local memories
considered are small (from 64 to 1024 words). A stack buffer of only 64 words
offers a miss ratio of 0.28 and a traffic ratio of 0.30. The stack buffer, more
complex than the choice point buffer, captures both choice point and
environment references. A copyback cache, capturing all types of references,
does better still - a 256 word cache (with four word lines) offers a miss ratio of
0.05 and a traffic ratio of 0.23. Smart caches, which avoid transferring lines no
longer in a valid storage area, reduce the cache traffic ratio by up to 30%. The
local data memories analyzed fall into three price-performance ranges. The
choice point -buffer occupies the low-end, the stack buffer occupies the mid
range, and the cache occupies the high-end. Many current Prolog machines
[21,58,57,56] incorporate large caches to ensure high performance. For these

machines, built with discrete logic, cache size was not as limiting a factor as in a
VLSI implementation. Efficient cost/performance VLSI designs (e.g., for the
processing element of a multiprocessor) integrate both the CPU and local
memory on a single chip. The data provided here should aid these designs,
where size is a critical factor.

A comparison of logic programming to procedural programming paradigms
is of interest because most current logic programming languages are
implemented on conventional hosts. In this book, various comparisons are drawn
between Prolog, FORTRAN, and Pascal. A portion of these results are
summarized in Table 6-1. The data cache traffic ratios are given for a four word
line cache with write-allocation. The results indicate that Pascal, with a smaller
working set than Prolog, exhibits higher locality, resulting in about half the data
traffic for equal sized caches. This holds for both copyback and write-through
data caches. Interestingly, both languages make about 25% of their data
references to global data objects. Estimating multiprocessor broadcast traffic as
writes to global (potentially shared) data, Pascal generates half the broadcast
traffic of Prolog because it makes about half the number of writes.

A major conclusion of the book is that shallow backtracking contributes
more to Prolog's data bandwidth requirement than any other factor. Advanced

www.manaraa.com

196 MEMORYPERFORMANCEOFPROLOGARC~URES

Prolog FORTRAN
WAM IBM/370

'\)d, data ref/instr (words) 2.32 0.524
'\)i, instr ref/instr (words) 0.679 0.837
mean instr size (bytes) 2.6 3.35
mean run length (instr) 6.5 16.9
copyback data cache TR 0.10
write-thru data cache TR 0.53
% write/data traffic 47% 18%
% broadcast/data traffic 12%

Table 6·1: Prolog, FORTRAN, and Pascal

Pascal

0.05
0.24
25%

6%

compilation techniques [87,4,90] are not discussed here, but promise to allay
the problem. The effectiveness of future compiler optimizations in reducing the
choice point traffic is unknown, however. Very effective compilers will alter the
memory referencing characteristics presented here, placing more emphasis on
heap referencing. With this trend in mind, data caches seem most appropriate for
future high-performance implementations.

In the area of local instruction memory design and analysis, the results
obtained are similar to those of traditional architectures. Byte encoding
generates 63% of the instruction traffic of word encoding. Bit encodings save
about 10% of the traffic generated by byte encoding. Look-ahead instruction
buffer measurements indicate that an instruction miss ratio of 0.18 could be
obtained by prefetching alone. The disadvantage of this model is the excessive
traffic wasted for each taken branch. Instruction caches have the ability to reduce
traffic and are therefore examined. The Prolog instruction stream exhibits less
temporal locality than instruction streams of procedural languages, because
loops, implemented recursively, are more spread out. This loss of locality is
verified by instruction cache and combined lID cache measurements. The l
eaches perform only moderately well and combined lID caches generate more
traffic than split I+D caches. The split caches are advantageous because spread
out loops act like sequential code in small combined caches, forcing data lines
out with LRU replacement.

Prolog performance can be increased further still with parallel architectures
and multiprocessor hosts. A contribution of this study in this area is the memory
performance analysis of the Restricted-AND Parallel Prolog architecture
(PW AM) [35] executing on a tightly-coupled shared memory multiprocessor
model. Shared memory multiprocessor consistency problems for the PW AM
architecture are solved in a variety of ways. Measurements of broadcast, hybrid,

www.manaraa.com

CONCLmnONSANDFUTURERESEARCH 197

and write-through coherent cache schemes are presented. The hybrid cache, a
new combination of write-through and write-broadcast cache designs, takes
advantage of RAP-Prolog attributes to guarantee consistency with moderately
low overheads and inexpensive hardware. The cache schemes analyzed fall into
three price-performance ranges. Traditional write-through caches occupy the
low-end, the hybrid caches occupy the mid-range, and the write-in broadcast
caches occupy the high-end. The PW AM memory performance measurements
presented in this book help verify the design tenets of the PW AM architecture:
low communication overheads and efficient sequential execution.

The analysis of the local memories cannot be accomplished solely within the
simple framework of miss and traffic ratios. This is because memory requests
contend for the service of a single main memory. To lessen this damaging effect,
interleaved main memories consisting of a set of single-port modules are
analyzed. Analytical queueing models based on the M/Oll model are used to
estimate the performance of the memory hierarchies. Of course, the contention
problem is worse for the shared memory multiprocessor model than for a
uniprocessor. Measurements of these effects are presented for two families of
organizations utilizing hybrid caches and write-in broadcast caches. The
queueing models measure bus and shared memory bandwidth efficiency (i.e., the
fraction of the bandwidth required by the system, supplied by the bus or shared
memory), and processor performance degradation. A single shared bus is
modeled because it is required by the coherent cache protocols studied.

The primary result of the queueing analysis is that for a multiprocessor with
a small number (eight) of high-performance processing elements (PEs), buses of
insufficient capacity become a performance bottleneck. Consider systems with a
two word bus connecting a shared memory and eight PEs, each with a 1024 word
data cache and 256 word instruction cache. Assuming T bus/T c = 0.2 (the ratio of
the bus cycle time to the main memory module cycle time) a hybrid data cache
system achieves 0.45 bus bandwidth efficiency, whereas a write-in broadcast
data cache system achieves 0.84 bus efficiency. Assuming higher capacity
buses, for instance Tbus'Tc = 0.05, the hybrid system achieves 0.80 bus
efficiency whereas the broadcast system achieves 0.96 bus efficiency. In
addition to tradeoffs between cache protocol performance and cost, cache size
and bus capacity can also be traded-off.

If bus capacity is sufficient to achieve the bandwidth required by the PEs,
measurements indicate that both hybrid cache and broadcast cache systems
deliver about the same shared memory bandwidth efficiency and processor
degradation. For the systems considered in the previous paragraph with a 32-
way interleaved shared memory, both the hybrid cache and broadcast systems
exhibit about 6% processor performance degradation. 16-way interleaving

www.manaraa.com

198 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

results in about 6.5% degradation. Thus, an interleaved shared memory can
successfully reduce the miss penalty seen by an individual PE.

These results indicate that given sufficient parallelism in an application, a
speed-up of about 750% can be achieved on a tightly-coupled PW AM
multiprocessor with eight high-performance (e.g., 100 KLIPS on large
applications) PEs. The design space investigated in this book may be considered
limited - conventional shared memory designs with single bus interconnect,
one-level interleaved memory, and few processing elements with small local
memories. The view taken here, however, is that all types of uniprocessors will
soon evolve into such systems because these limited multiprocessors offer the
best cost/performance tradeoff. This book analyzes the memory design
parameters for Prolog architectures. A low-cost PW AM mUltiprocessor
achieving over one million application LIPS appears to be a realistic goal, well
within CUITent technology constraints.

6.2. Future Research

Recent comparisons of the PLM with SPUR [8] and the MC68020
[54] indicate that reduced and multi-purpose instruction-set architectures have

certain advantages over the high-level W AM. These types of instruction sets
allow more sophisticated compiler optimizations. A detailed study, similar to
this book, of the memory characteristics of low-level Prolog instruction sets is
necessary to evaluate these architectures. The effects of compiler optimizations
should also be evaluated.

More precise cost and area measurements are needed for the local memories
described here (e.g., Mulder's study of Pascal [55]). This would permit a more
accurate accessment of the price-performance niches of the local memories.
Larger benchmarks would allow larger local memories to be measured. In
addition, a more thorough study of alternative designs for the zeroth memory
level, i.e., the register set, should be conducted. For instance, the Pegasus chip
[71] implements a single choice point buffer as a set of shadow registers - the

cost (in area)/performance tradeoffs of this and similar designs (including
general-purpose microprocessors, such as the AM29000 [99]) are of great
interest. The traditional Prolog CIF architecture presented in Chapter 2, and its
direct cOITespondence architectures, such as Prolog-lO, may be better suited than
the W AM for a host with a large stack buffer or multiple register set.

This book analyzes the memory performance of a Restricted AND-Parallel

www.manaraa.com

CONCLUSIONS AND FUTURE RESEARCH 199

Prolog architecture. The study of PW AM executing on a shared memory
multiprocessor requires more detailed simulations of coherent caches. The
shared memory and bus queueing models should be coupled for more accurate
estimations of performance degradation and speed-up. Most importantly, more
realistic benchmarks are required, including those with CGE conditions and
nondeterminism. The efficient exploitation of other types of parallelism in logic
programs is also of great importance. Extensive performance studies of other
parallel Prolog architectures (e.g., Shen's study of ANLW AM [73]) are needed
to evaluate their potential benefits.

www.manaraa.com

Appendix A

Glossary of Notation

P

Pa

ANLWAM

B

memory references per instruction.
customer arrival rate in a queueing model, measured in units
of requests per machine cycle.

sustained burst memory data request arrival rate from a
processor.

sustained burst memory instruction request arrival rate from
a processor.

sustained burst memory request arrival rate from a processor.
For Prolog this arrival rate corresponds to the intense
memory activity during a chain of successive failures.

service rate in a queueing model, measured in units of
customers (requests) per machine cycle.

bandwidth efficiency, i.e., the ratio of the achieved
bandwidth to the offered (desired) bandwidth.

occupancy of the open queueing model, measured in units of
Erlangs (an abstract unit). Occupancy is calculated as the
(effective) arrival rate over the (effective) service rate.
Represents the load on the server.

asymptotic occupancy, i.e., occupancy of the closed queueing
model.
Argonne National Laboratory OR-Parallel Prolog
architecture.

achieved bandwidth in an asymptotic (closed) queueing
model, measured in units of words per cycle. Also referred
to as B(m,n) in the literature.

offered bandwidth in an open queueing model, measured in
units of words per cycle.

current (top) choice point pointer in the W AM.

www.manaraa.com

202

CIF

CP

CR

D

DCA

DR

E

H

HB

RPM

L

LIPS

LRU

MIPS

MR

m

n

P

P

PLM

MEMORY PERFORMANCE OF PROLOG ARCHITECfURES

coefficient of variation for queueing models.

current choice point E-stack pointer in the split-stack
architecture.

Canonical Interpretive Form.

continuation pointer in the W AM - points to next
instruction to be executed should the current goal succeed.
This register acts like a hardware return pointer from the
current procedure call.

copyback ratio, defined for a copyback cache as the ratio of
the number of words copied back from the cache to main
memory, to the number of write requests issued by the
processor.

processor performance degradation, defined as the fraction of
ideal processor performance (assuming a local memory of
unlimited size) lost due to local memory misses in an actual
processor (with a finite local memory).

Direct Correspondence Architecture.

dirty line ratio, defined for write-through and hybrid caches
as the ratio of the number of copied back lines to the number
of caches misses, i.e., the fraction of replaced lines that are
dirty.

current environment pointer in the W AM.

top of heap pointer in the W AM.

heap backtrack pointer in the W AM - points to where the
top of heap was at the time the current choice point was
created.

High-speed Prolog Machine (also called Chi).

cache line (block) size.

logical inferences per second.

Least Recently Used.

millions of instructions per second.

miss ratio, defined as the fraction of references that cannot be
serviced from local memory.

interleaving factor, i.e., number of memory modules in an
interleaved memory.

number of processing elements in multiprocessor.

processor performance, measured in units of cycles per
instruction.

current instruction pointer (program counter) in the W AM.

Programmed Logic Machine.

www.manaraa.com

GLOSSARY OF NOTATION

PSI

PWAM

Q

Q'
RAP-Prolog

RISC

S

SPUR

Ta

Taeeess

Tb

Te

Tdead

Te

T'w

TR
TRO

WAM

Xi

Yi

203

Personal Sequential Inference machine.

Restricted AND-Parallel Prolog architecture (also known as
WHAM!).

average number of customers in system, in units of words.

average number of customers enqueued, in units of words.

Restricted AND-Parallel Prolog.

Reduced Instruction Set Computer.

heap structure pointer in the W AM - points to elements of
structures and lists on the heap.

Symbolic Processing Using RISCs.

memory access time, in cycles.

average memory request delay, in cycles.

bus transfer time, in cycles.

memory cycle time, in cycles.

heuristic used to model processor stalling due to local
memory read miss.

effective memory cycle time, in cycles, calculated as T elm.

average time a memory request waits for service, in cycles.

top of trail pointer in the W AM.

Tail Recursion Optimization.

Warren Abstract Machine.

temporary register i in the W AM. Also referred to as Ai in
the literature.

permanent variable i in the W AM, resident in the current
environment.

www.manaraa.com

AppendixB

Lcode Instruction Set Summary

Table B-1 lists each Lcode instruction with its sizes for both word and byte
encoding schemes. Each instruction is listed alphabetically by opcode, with an
instance of the assembly code. The word encoding size is given in units of
words. The byte encoding size is given in units of bytes. Refer to Tick [84] for
the complete Lcode semantics. Refer to Warren [96] for the W AM instruction
semantics. Notes concerning Table B-1 follow.

1. Local branch instructions (Le., branches within a procedure) are
given two sizes for each encoding scheme. The first size
corresponds to a short offset of one byte. The second size
corresponds to a long offset of two bytes. For example, with a byte
encodmg, branch requires 3 bytes for short offsets and 4 bytes for
long offsets.

2. Non-local branch targets (call and execute instructions) are
encoded as a two byte offset from a segment register.

3. The index instructions switch constant and
switch structure have sizes of 1 wordor 2 bytes. This does
not incluae the size of the hash table following the instruction.
During emulation, only one hash entry reference (two reads - one
for the key, one for the value) is counted in addition to the
instruction fetch.

4. In general, the trust rne else operand can be a local clause
label. This facilitates cOcle assertion and retraction. Since
assertion/retraction of code is not implemented in the Lcode
system, the trust_rne_else instruction is always given a fail
operand.

Table B-2 lists each Lcode instruction with associated dynamic statistics
measured by averaging the statistics from the individual benchmark programs
(CHAT, PLM, QC1, and ILl). Instructions not executed in any of the programs
are not included in the table. The mean instruction frequency, data and
instruction references per instruction (in bytes) and percent weight are shown.
Instruction weight is calculated as the product of instruction frequency and

www.manaraa.com

206 MEMORY PERFORMANCE OF PROLOG ARCHITECI'URES

references per instruction. All instructions have a fixed number of instruction
references (except for the indexing instructions for which instruction references
were not accurately measured). Notes concerning Table B-2 follow.

1. The escape statistics are averaged over those built-ins present in
the benchmarks.

2. The failure statistics are averaged over all failures. No instruction
bytes are referenced because failure is similar to a software trap.

3. The get constant, put constant, and
unify constant instructions are furtl1er categorized as atom
or integer. All the statistics presented are additive, so that for
instance, get constant accounts for 2.046% of all instructions
executed, wiffi 1.67% of the total weight. Note that the
benchmarks show a strong bias towards symbolic rather than
arithmetic computation.

4. The Lcode compiler does not have the ability to generate
unify value instructions. Only the unoptirnized form of
unify-local value instructions are generated. For read
mode, these instructions are equivalent, and are listed as
unify_value.

5. Copy instructions correspond to unify instructions executed in
write mode.

6. In write mode, a unify local value instruction dereferences
its operand and globalizes it onto the heap if necessary. The
copy local value category corresponds to write mode
execution of unify local value instructions that do require
globalization. - -

7. The copy value category corresponds not to unify value
instructions executed in write mode, but raffier to
unify local value instructions that do not require
globalization (in this case, execution of the two forms are identical,
except for the extra dereference). Note that globalization was
required only about 1 in 9 times.

Table B-3 summarizes these statistics by instruction type, as defined in Table
2-5. The instruction types are listed in order of greatest percent weight. These
statistics consider failure, general unification, and escape as separate
instruction types. Therefore the cost of general unification is not counted in the
head or structure matching groups. Note that the indexing weight is highly
optimistic, calculated assuming perfect hashing.

www.manaraa.com

LeODE INSTRUCI'lON SET SUMMARY 207

comp <,X1,X2
comp <,Y1,Y2
cond var,X1
cond var,Y1
cut
cutd 1234

www.manaraa.com

208 MEMORY PERFORMANCE OF PROLOG ARCHITEcrURES

opcode assembly instance
put constant put constant Xl,-44
put-list put-list Xl
put:nil put-nil Xl
put structure put-structure Xl,f/4
put-unsafe int x put-unsafe int Xl
put-unsafe-int-y put-unsafe-int Y1
put:unsafe:value~ put-unsafe-value Y1,X2
put value x put-value Xl,X2
put:value:Y put-value Yl,X2
put variable x put-variable Xl,X2
put:variable~ put-variable Yl,x2
retry retry 1234
retry_me_else retry_rne_else _1234
stop stop
subtract subtract Xl,X2,X3
subtract constant subtract_const Xl,X2,15
switch c~nstant3 switch constant S
switch-structure3 switch structure S
switch-term switch-term _12, fail, 34
trust trust 1234
trust me else trust me else fail4
try try S; 1234
try_me_else try me-else S, 1234
unify constant unify constant--44
unify-local value xunify-local value x Xl
unify:local:value~unify:local=value:y Y1
unify nil unify nil
unify-value x unify-value x Xl
unify=value:Y unify:value:Y Y1
unify variable x unify variable x Xl
unify:variable:y unify:variable:Y Yl
unify_void unify_void S

Table B·l: Lcode Instruction Set Formats· continued

words bytes
2 6
1 2
1 2
2 6
1 2
1 2
1 3
1 2
1 3
1 2
1 3
1 2/3
1 2/3
1 1
1 3
2 6
1+2 2+8
1+2 2+8
1/2 417
1 2/3
1 1
1 3/4
1 3/4
2 5
1 2
1 2
1 1
1 2
1 2
1 2
1 2
1 2

www.manaraa.com

LeODE INSTRUCfION SET SUMMARY 209

% data instr %
ogcode instr bytes bytes wei2ht
add 0.026 0.00 3 0.Q1
add constant 0,014 0.00 6 0.Q1
allocate 3.491 16.00 2 5.27
call 3.347 0.00 3 0.84
comp_x 0.151 1.35 3 0.05
compJ 0.114 6.04 4 0.12
cond x 1.104 1.10 2 0.23
condJ 0.416 7.20 3 0.29
cut 0.859 14.88 1 1.18
cutd 0.247 12.53 2 0.30
cut_strong 0.628 6.84 1 0.43
deallocate 1.670 8.00 1 1.26
decrement 0.047 0.00 2 0.01
divide constant 0.026 0.00 6 0.Q1
escaper 1.119 23.62 2 2.60
execute 3.037 0.00 3 0.76
jai[ure2 6.009 44.59 0 22.49
get atom3 1.823 4.40 6 1.49
get=integer3 0.223 4.52 6 0.18
get_list 5.117 2.64 2 1.88
get_nil 0.500 3.20 2 0.20
get_structure 6.437 5.83 6 6.52
get_value_x 1.953 11.17 2 2.13
get_valueJ 0.187 13.21 3 0.25
get variable x 0.560 0.00 2 0.09
get:variableJ 6.051 4.00 3 3.56
increment 0.234 0.00 2 0.04
jump 0.359 0.00 2 0.06
proceed 2.447 0.00 1 0.21
put atom 0.254 0.00 6 0.13
put-integer 0.107 0.00 6 0.05
put_list 0.531 0.00 2 0.09
put_ni.l 0.049 0.00 2 0.01

Table B-2: Lcode Instruction Reference Characteristics (notes 1-7 in text)

www.manaraa.com

210 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

% data instr %
tyne instr bytes bytes wei2ht
put_value_x 2.647 0.00 2 0.44
put_valueJ 6.878 4.00 3 4.04
put structure 0.383 4.00 6 0.32
put-unsafe integer x 0.277 0.40 2 0.06
put=unsafe=integer~ 0.096 3.04 2 0.05
put_unsafe_valueJ 1.617 8.61 3 1.57
put variable x 0.372 4.00 2 0.19
put=variable~ 2.475 4.00 3 1.45
retry 0.768 4.00 2 0.39
retry_me_else 2.133 4.00 2 1.07
switch constant 0.867 0.61 10 0.75
switch-structure 0.914 4.72 10 1.12
switch-term 3.657 0.51 4 1.36
trust 0.267 7.93 2 0.22
trust me else 2.842 8.00 1 2.15
try 0.330 44.17 3 1.34
try_me_else 4.414 42.64 3 16.69
unify_atom 0.890 5.12 5 0.71
unify_integer 0.092 4.20 5 0.07
unify nil 0.051 3.37 1 0.03
unify=value_x4 0.905 26.86 2 2.11
unify_valueJ 0.042 6.74 2 0.05
unify_variable_x 6.257 4.00 2 3.15
unify_variable_y 2.627 8.00 2 2.20
unify void 3.099 0.00 2 0.52
copy itomS 0.396 4.00 5 0.30
copy-integer 0.270 4.00 5 0.20
copy=local_value_x6 0.230 6.33 2 0.18
copy_local_value_y 0.103 11.89 2 0.11
copy nil 0.398 4.00 1 0.17
copy=value_x7 1.928 5.90 2 1.26
copy_valuey 0.912 10.65 2 0.94
copy variable x 1.794 4.00 2 0.90
copy: variable J 1.110 8.00 2 0.93
copy_void 0.302 5.24 2 0.19

Table B·2: Lcode Instruction Reference Characteristics· continued

www.manaraa.com

LCODE INSTRUCTION SET SUMMARY 211

% data instr %
tYl~e instr bytes bytes weight
procedure control 12.59 14.18 1.80 24.31
failure 6.36 38.24 21.32
head matching 20.94 6.75 3.44 13.91
structure matching 19.97 6.01 2.44 12.83
clause control 14.11 4.80 2.20 9.35
goal matching 14.15 2.45 3.25 8.77
unification 3.11 14.36 3.54
escape 1.49 16.66 2.00 3.00
indexing 7.55 3.78 2.75 2.89
arithmetic 0.39 0.00 3.80 0.09

Table B·3: Lcode Characteristics by Type

www.manaraa.com

Appendix C

Local Memory Management Algorithms

In this appendix, the management algorithms for the choice point buffer,
copyback stack buffer, and copyback environment stack (E-stack) buffer are
presented. Note that the algorithms are written for clarity, not optimality. Buffer
management must often be performed within normal instruction semantics. For
instance, in Figure C-2, allocate resets E and TOS, manages the buffer, and
then writes the new environment. This last portion of the instruction semantics is
not included in the algorithm and can be found in Tick [84].

action is
reference i(B):

if (valid and BufferSize~i)
access buffer[i];

else
access memory[B+i];

try n:
try me else n:

- if(valid)
memory[B .. B+m] = buffer[O .. m];

else valid = 1;
if(n> BufferSize)

m = BufferSize;
else m = n;

cut:
trust:
trust me else:

valid-: 0;

Figure C-l: Choice Point Buffer Management

www.manaraa.com

214 MEMORY PERFORMANCE OF PROLOG ARCHITECruRES

action is
reference to a:

if (valid and Z~a and ~A)
access buffer[a];
if (write) dirty[a] = 1;

else
access memory[a];

deallocate:

cut:

CP = CP(E);
E = E(E);
reset();

B = B(E);
if nondeterminate B = B(B);
HB =HB(B);
reset();

trust:
trust me else:

B = B(B);
HB =HB(B);
reset();

allocate n:
E = TOS += n+4;
set(n+4);

try n:
try me else n:

- B -: TOS += n+4;
set(n+4);

Figure C·2: Stack Buffer Management

www.manaraa.com

LOCAL MEMORY MANAGEMENT ALGORITHMS

set(n):
if (n>BufferSize)

if valid

else

valid = 0;
copyback(A -Z+4);

if (valid)

else

InUse = A-Z+4;
LeftOver = BufferSize - InUse;
d = n - LeftOver;
if (d>O)

copyback(d);
Z+=d;

A=TOS;

valid = 1;
A = TOS;
Z= A-n;

reset():
if (E>B)

TOS =E;
else

TOS =B;
valid = TOS~;
if (valid)

else

copyback(d):

dirty[Z .. Z-TOS+A+4] = 0;
A=TOS;

dirty[Z .. A+4] = 0;

for (i=Z;i<Z+d;i+=4)
if (dirty[i])

dirty[i] = 0;
memory[i] = buffer[i];

Figure C-3: Stack Buffer Management Support

215

www.manaraa.com

216 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

action is
reference to a:

if (valid and Z~a and ~A)
access buffer[a];
if (write) dirty [a] = 1;

else
access memory[a];

deallocate:

cut:

CP=CP(E);
E =E(E);
reset();

B =B(E);
ifnondeterminate B = B(B);
HB =HB(B);
reset();

trust:
trust me else:

if = B(B);
HB =HB(B);
reset();

allocate n:
E = TOS += n+4;
set(n+4);

reset():
if(E>C)

TOS =E;
else

TOS =C;
valid = TOS~;
if (valid)

else

dirty[Z .. Z-TOS+A+4] = 0;
A = TOS;

dirty[Z .. A+4] = 0;

Figure C-4: E-Stack Buffer Management

www.manaraa.com

References

1. S. Abe, T. Bandoh, S. Yamaguchi, K. Kurosawa, K. Kiriyama. High
Performance Integrated Prolog Processor IPP. 14th Annual International
Symposium on Computer Architecture, IEEE Computer Society, June, 1987, pp.
100-107.

2. D. B. Alpert. Memory Hierarchies for Directly Executed Language
Microprocessors. Ph.D. Th., Stanford University, June 1984. also available as
Technical Report CSL-TR-84-260.

3. J. Archibald. High Performance Cache Coherence Protocols For Shared-Bus
Multiprocessors. Technical Report 86-06-02, University of Washington, Seattle,
WA 98195, June, 1986.

4. Y. Asakawa, H. Komatsu, T. Kurokawa, N. Tamura. A Very Fast Prolog
Compiler on Multiple Architectures. Fall Joint Computer Conference, ACM and
IEEE Computer Society, November, 1986.

5. C. Barney. "This New Design Outruns Vectorizing Minisupers". Electronics
(April 30 1987), 65.

6. P. Bitar and A. M. Despain. Multiprocessor Cache Synchronization. 13th
Annual International Symposium on Computer Architecture, IEEE Computer
Society, June, 1986, pp. 424-433.

7. P. Bitar. personal communication. December 1986.

8. G. Borriello, A. Cherenson, P. B. Danzig, and M. Nelson. RISCs or CISCs
for Prolog: A Case Study. Second International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS II), IEEE
Computer Society, October, 1987.

9. D. L. Bowen, L. M. Byrd and W. F. Clocksin. A Portable Prolog Compiler.
Logic Programming Workshop '83, Universidade Nova de Lisboa, June, 1983,
pp.74-83.

10. D. L. Bowen. NIP: New Implementation of Prolog. Dept. of Artificial
Intelligence, University of Edinburgh, May, 1984. unpublished.

www.manaraa.com

218 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

11. R. Butler, E. L. Lusk, R. Olson, and R. A. Overbeek. ANLW AM: A Parallel
Implementation of the Warren Abstract Machine. Argonne National Laboratory,
Argonne, IL 60439, 1986.

12. L. Byrd, F. C. N. Pereira, and D. H. D. Warren. A Guide to Version 3 of
DEC-lO PROLOG. 19, Dept. of Artificial Intelligence, University of Edinburgh,
July,1980.

13. L. Byrd. personal communication. 1985.

14. M. Carlsson. Compilation for Tricia and its Abstract Machine. Technical
Report 35, UPMAIL, Uppsala University, September, 1986.

15. L. M. Censier and P. Feautrier. "A New Solution to Coherence Problems in
Multicache Systems". IEEE Transactions on Computers C-27, 12 (December
1978),1112-1118.

16. K. L. Clark and S. Gregory. "Notes on the Implementation ofPARLOG".
Journal o/Logic Programming 2,1 (April 1985).

17. S. K. Debray. Efficient Register Allocation for Temporary Variables in the
Warren Prolog Engine. Research Paper 85110, Department of Computer Science,
SUNY at Stony Brook, April, 1985.

18. D. DeGroot. Restricted And-Parallelism. International Conference on Fifth
Generation Computer Systems, November, 1984, pp. 471-478.

19. D. R. Ditzel and H. R. McLellan. Register Allocation for Free: The C
Machine Stack Cache. Symposium on Architectural Support for Programming
Languages and Operating Systems, March, 1982, pp. 48-56.

20. T. P. Dobry, Y. N. Patt, and A. M. Despain. Design Decisions Influencing
the Microarchitecture for a Prolog Machine. The Seventeenth Annual
Microprogramming Workshop, IEEE Computer Society, October, 1984, pp.
217-231.

21. T. P. Dobry, A. M. Despain, and Y. N. Patt. Performance Studies of a
Prolog Machine Architecture. 12th Annual International Symposium on
Computer Architecture, IEEE Computer Society, December, 1985, pp. 180-190.

22. T. P. Dobry. A Coprocessor for AI: LISP, Prolog and Data Bases.
Proceedings of Spring Compcon '87, IEEE Computer Society, February, 1987,
pp. 396-402.

23. T. P. Dobry. A High Performance Architecture/or Prolog. Kluwer
Academic Publishers, Norwell, MA 02061,1988.

24. B. Fagin and T. P. Dobry. The Berkeley PLM Instruction Set: An
Instruction Set for Prolog. Research Report UCBICSD 86/257, Computer
Science Division, University of California at Berkeley, September, 1985.

www.manaraa.com

REFERENCES

25. Introduction to the CLIPPER Architecture. Fairchild Camera and
Instrument Corp., Palo Alto CA 94304.

219

26. M. J. Flynn and L. W. Hoevel. A Theory of Interpretive Architectures: Ideal
Language Machines. Research Paper 170, Stanford Electronics Laboratory,
Stanford University, Stanford, CA 94305,1979.

27. M. J. Flynn and L. W. Hoevel. "Measures of Ideal Execution Architectures" .
IBM Journal of Research and Development 28,4 (July 1984),356-369.

28. M. J. Flynn with G. E. Rossmann and A. J. Smith. Studies in Processor
Design. ,1987. in preparation.

29. R. P. Gabriel. Performance and Evaluation of Lisp Systems. MIT Press,
Cambridge MA, 1985. also available from Stanford University Computer
Science Dept. as Research Paper 111.

30. J. Gabriel, T. G. Lindholm, E. L. Lusk, and R. A. Overbeek. A Tutorial on
the Warren Abstract Machine for Computational Logic. Research Paper
ANL-84-84, Argonne National Laboratory, Argonne, IL 60439, June, 1985.

31. J. Gee, S. W. Melvin, Y. N. Patt. Advantages of Implementing Prolog by
Microprogramming a Host General Purpose Computer. Fourth International
Conference on Logic Programming, University of Melborne, May, 1987.

32. D. H. Gibson. Considerations in Block-Oriented Systems Design. AFIPS
Conference Proceedings, Spring Joint Computer Conference, April, 1967, pp.
75-80.

33. A. Gupta, C. Forgy, A. Newell, and R. Wedig. Parallel Algorithms and
Architectures for Rule-Based Systems. 13th Annual International Symposium on
Computer Architecture, IEEE Computer Society, June, 1986, pp. 28-37.

34. M. V. Hermenegildo. An Abstract Machine for the Restricted AND-Parallel
Execution of Logic Programs. Third International Conference on Logic
Programming, Imperial College, July, 1986, pp. 25-39.

35. M. V. Hermenegildo. Restricted AND-Parallel Prolog and its Architecture.
Kluwer Academic Publishers, Norwell, MA 02061,1987.

36. M. V. Hermenegildo and E. Tick. Performance Evaluation of the RAP-
W AM Restricted AND-Parallel Architecture on Shared Memory
Multiprocessors. Technical Report PP-085-87, Microelectronics and Computer
Technology Corporation (MCC), Austin, TX 78759, March, 1987.

37. M. V. Hermenegildo. Relating Goal Scheduling, Precedence, and Memory
Management in AND-Parallel Execution of Logic Programs. Proceedings of the
Fourth International Conference on Logic Programming, May, 1987.

www.manaraa.com

220 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

38. M. D. Hill and A. J. Smith. Experimental Evaluation of On-Chip
Microprocessor Cache Memories. 11th Annual International Symposium on
Computer Architecture, IEEE Computer Society, 1984, pp. 158-166.

39. J. C. Huck. Comparative Analysis of Computer Architectures. Ph.D. Th.,
Stanford University, March 1983. also available as Technical Report CSL
TR-83-243.

40. S. C. Johnson. Y ACC - Yet Another Compiler Compiler. Unix
Programmer's Manual.

41. Y. Kaneda. Sequential PROLOG Machine PEK Architecture and Software
System. International Workshop on High-Level Computer Architecture, The
University of Maryland, May, 1984, pp. 4.1-4.6.

42. M. G. H. Katevenis. Reduced Instruction Set Computer Architecturesfor
VLSI. Ph.D. Th., Computer Science Division (EECS), University of California
Berkeley, October 1983.

43. L. Kleinrock. Queueing Systems, Volume I: Theory. John Wiley & Sons,
1975.

44. R. A. Kowalski. Predicate Logic as a Programming Language. Information
Processing 74, IFIP Congress, August, 1974, pp. 569-574.

45. R. A. Kowalski. Logic for Problem Solving. North Holland, 1979.

46. P. Kursawe. How To Invent A Prolog Machine. Third International
Conference on Logic Programming, Imperial College, July, 1986, pp. 134-148.

47. M. E. Lesk and E. Schmidt. LEX - Lexical Analyzer Generator. Unix
Programmer's Manual.

48. J. W. Lloyd. Logic Programming. Springer-Verlag, 1984.

49. V. W. K. Mak. A Survey of Concurrent Architectures. Technical Report
CSL-TR-86-307, Computer Systems Laboratory, Stanford University, Stanford,
CA 94305, September, 1986.

50. H. Matsumoto. "A Static Analysis of Prolog Programs". SIGPLAN Notices
20, 10 (October 1985), 48-59.

51. J. McCarthy. Lisp 1.5 Programmer's Manual. MIT Press, Cambridge MA.,
1965.

52. C. S. Mellish. An Alternative to Structure-Sharing In the Implementation of
a Prolog Interpreter. In Logic Programming, K. L. Clark and S.-A. Tamlund,
Ed., Academic Press, 1982, pp. 99-106.

53. C. L. Mitchell. Processor Architecture and Cache Performance. Ph.D. Th.,
Stanford University, June 1986. also available as Technical Report CSL
TR-86-296.

www.manaraa.com

REFERENCES 221

54. J. M. Mulder and E. Tick. A Performance Comparison Between PLM and
an MC68020 Prolog Processor. Fourth International Conference on Logic
Programming, University of Melborne, May, 1987.

55. J. M. Mulder. Tradeoffs in Processor-Architecture and Data-Buffer Design.
Ph.D. Th., Stanford University, 1987.

56. H. Nakashima and K. Nakajima. Hardware Architecture of the Sequential
Inference Machine: PSI-II. 1987 International Symposium on Logic
Programming, IEEE Computer Society, August, 1987.

57. R. Nakazaki, et. al. Design of a High-speed Prolog Machine (HPM). 12th
Annual International Symposium on Computer Architecture, IEEE Computer
Society, June, 1985, pp. 191-197.

58. H. Nishikawa, M. Yokota, A Yamamoto, K. Taki, S. Uchida. The Personal
Sequential Inference Machine (PSI): Its Design Philosophy and Machine
Architecture. Logic Programming Workshop '83, Universidade Nova de Lisboa,
June, 1983,pp.53-73.

59. R. A. O'Keefe. "Prolog Compared With Lisp?". SIGPLAN Notices 18, 5
(May 1983), 46-56. Also available from Edinburgh as Research Report 180.

60. R. Onai, H. Shimuzu, K. Masuda, and M. Aso. "Analysis of Sequential
Prolog Programs". Journal of Logic Programming 3,2 (July 1986), 119-141.

61. D. A. Patterson and C. H. Sequin. RISC I: A Reduced Instruction Set VLSI
Computer. 8th Annual International Symposium on Computer Architecture,
IEEE Computer Society, May, 1981, pp. 443-458.

62 •. Quintus Prolog User's Guide and Reference Manual- Version 6. Quintus
Computer Systems Inc., Mountain View CA 94041.

63. G. Radin. "The 801 Minicomputer". IBM Journal of Research and
Development 27 (May 1983),237-246.

64. M. Ratcliffe and P. Robert. The Static Analysis of Prolog Programs.
CA-ll, ECRC, October, 1985.

65. R. Rau. Sequential Prefetch Strategies For Instructions and Data. Research
Paper 131, Digital Systems Laboratory, Stanford University, Stanford, CA
94305, 1977.

66. J. A. Robinson. "A Machine-Oriented Logic Based on the Resolution
Principle" . Journal of the ACM 12 (1965), 23-4l.

67. J. A. Robinson. Logic: Form and Function. North-Holland, 1979.

68. M. L. Ross and A. G. McMahon. Memory Behaviour of a Sequential Prolog
Interpreter. Research Paper 84/6, Dept of Computing, Royal Melbourne Institute
of Technology, 1984.

www.manaraa.com

222 MEMORY PERFORMANCE OF PROLOG ARCHITECrURES

69. M. L. Ross and K. Ramamohanarao. Paging Strategy for Prolog Based on
Dynamic Virtual Memory. Technical Report 86/8, Dept of Computing, Royal
Melbourne Institute of Technology, 1986.

70. P. Roussel. Prolog: Manuel de Reference et d'Utilisation. University d' Aix
Marseille, Groupe de lA, Marseille, France, 1975.

71. K. Seo and T. Yokota. Pegasus: A RISC Processor For High-Performance
Execution of Prolog Programs. International Conference on Very Large Scale
Integration, IFIP Congress, August, 1987. submitted for publication.

72. E. Y. Shapiro. A Subset of Concurrent Prolog and Its Interpreter. TR-003,
ICOT, Minato-ku Tokyo 108, Japan, January, 1983.

73. K. Shen. An Investigation of the Argonne Model of OR-Parallel Prolog.
Master Th., University of Manchester,November 1986.

74. A. J. Smith. "A Comparative Study of Set Associative Memory Mapping
Algorithms and Their Use for Cache and Main Memory". IEEE Transactions on
Software Engineering SE-4, 2 (March 1978), 121-130.

75. A. J. Smith. "Cache Memories". Computing Surveys (September 1982),
473-530.

76. J. E. Smith and J. R. Goodman. A Study of Instruction Cache Organizations
and Replacement Policies. 10th Annual International Symposium on Computer
Architecture, IEEE Computer Society, June, 1983, pp. 132-137.

77. G. L. Steele Jr .. Common Lisp. Digital Press, 1984.

78. L. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, 1986.

79. W. D. Strecker. Cache memories for PDP-II Family Computers. 3rd
Annual International Symposium on Computer Architecture, IEEE Computer
Society, January, 1976, pp. 155-158.

80. Symbolics 3600 Technical Summary. Symbolics Inc., Cambridge, MA.

81. G. S. Taylor, P. N. Hilfinger, J. R. Larus, D. A. Patterson, and B. G. Zorn.
Evaluation of the SPUR Lisp Architecture. 13th Annual International
Symposium on Computer Architecture, IEEE Computer Society, June, 1986, pp.
444-452.

82. E. Tick. Prolog Memory-Referencing Behavior. Technical Report CSL
TR-85-281, Computer Systems Laboratory, Stanford University, Stanford, CA
94305, September, 1985.

83. E. Tick. Memory Performance of Lisp and Prolog Programs. Third
International Conference on Logic Programming, Imperial College, July, 1986,
pp. 642-649. also available as Stanford University Technical Report CSL
TR-86-291.

www.manaraa.com

REFERENCES

84. E. Tick. A Prolog Emulator. Technical Note CSL-TN-87-324, Computer
Systems Laboratory, Stanford University, Stanford, CA 94305, May, 1987.

223

85. E. Tick. A Comparison Between the W AM and DEC-lO Prolog
Architectures. Technical Note CSL-TN-87-323, Computer Systems Laboratory,
Stanford University, Stanford, CA 94305, May, 1987.

86. H. Touati and A. Despain. An Empirical Study of the Warren Abstract
Machine. 1987 International Symposium on Logic Programming, IEEE
Computer Society, August, 1987.

87. A. K. Turk. Compiler Optimizations for the W AM. Third International
Conference on Logic Programming, Imperial College, July, 1986, pp. 657-662.

88. K. Ueda. Guarded Hom Clauses. Technical Report TR-I03, ICOT, Minato
ku Tokyo 108, Japan, June, 1985.

89. P. Van Roy. A Prolog Compiler for the PLM. Master Th., University of
California at Berkeley,August 1984. also available as Technical Report
UCB/CSD 841203.

90. P. Van Roy and B. Demoen. Improving the Execution Speed of Compiled
Prolog with Modes, Clause Selection, and Determinism. T APSOFf '87: Joint
Conference on Theory and Practice of Software Development, March, 1987.

91. S. Wakefield. Studies in Execution Architectures. Ph.D. Th., Stanford
University, December 1982. also available as Technical Report CSL-TR-83-237.

92. D. H. D. Warren and L. M. Pereira. Prolog - The Language and its
Implementation Compared with Lisp. Symposium on AI and Programming
Languages, ACM, August, 1977, pp ..

93. D. H. D. Warren. Applied Logic - Its Use and Implementation as
Programming Tool. Ph.D. Th., University of Edinburgh, 1977. also available as
SRI Technical Note 290.

94. D. H. D. Warren. An Improved Prolog Implementation which Optimises
Tail Recursion. Research Paper 156, Dept. of Artificial Intelligence, University
of Edinburgh, 1980.

95. D. H. D. Warren and F. C. N. Pereira. An Efficient, Easily Adaptable
System For Interpreting Natural Language Queries. Research Paper 155, Dept.
of Artificial Intelligence, University of Edinburgh, February, 1981.

96. D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Report
309, Artificial Intelligence Center, SRI International, 1983.

97. D. H. D. Warren. Prolog Engine. Artificial Intelligence Center, SRI
International, April, 1983. unpublished draft.

www.manaraa.com

224 MEMORY PERFORMANCE OF PROLOG ARCHITECfURES

98. P. F. Wilko Prolog Benchmarking. Research Paper 111, Dept. of Artificial
Intelligence, University of Edinburgh, December, 1983.

99. A. Wolfe and B. Cole. "The World's Fastest Microprocessor". Electronics
(March 19 1987),61.

100. D. Znidarsic. personal communication. March 1987.

www.manaraa.com

Index

Access status 165, 170
Achieved bandwidth 143
Address trace 72
ADEPT 12,91
Aliasing 124
allocate 40,81
AM29000 microprocessor 124, 198
AND-OR tree 25
ANLWAM 61,199
Append 27
Architecture 20

emulator 72
environment-stacking 13,47
ideal 12
procedural language 16
tagged 22

Argument
mode 33
register 36, 48, 56

Arithmetic 7,56,211
Arity 5,57
arrive 53
Assignment 32
Atom 5,57

B-stack 37,60
Backtracking 6, 11,25,32

chain 48
deep 48, 50, 80
frame 48
intelligent 63
shallow 3, 44, 48, 50, 54, 80,

107,124,194
Bandwidth efficiency 143
(un)binding 32, 42, 170
Block

See also line

Branch point 25, 37
frame 26

Broadcast efficiency 171
Built-in procedure 7
Bus

arbitration 166
bandwidth 104
bandwidth efficiency 149, 156,

183, 197
capacity 156, 197
cycle time 138
queueing models 145, 149, 182,

183
technology 104, 188
width 112, 138, 153

Busy wait 99, 167

C
machine 109
working set 13

Cache 4,9, 16, 124, 136
address translation directory 168
associativity 118
broadcast 4,165,166,196
coherent 165, 166, 168, 199
copyback 16,115,195
hybrid 4,165,168,174,196
instruction 16, 130, 196
instruction traffic ratio 131
instruction+data (I+D) 134, 196
instruction/data (liD) 134, 196
line 117
miss ratio 131
queueing models 146, 179
replacement 118
size 118
smart 15,87,121,195

www.manaraa.com

226

sub-block 118
write-allocation 118
write-through 4, 16, 174, 196

call 30,40
Call depth 81
Canonical interpretive form (CIF) 2,

20, 193
distance 21
ideal indexing 95
instruction encoding 38
instruction referencing 95
memory referencing 21, 32, 34,

93
naive 22
operand 28, 38
procedural 20, 30
register-based 22, 35
size 21
stability 21
traditional 22, 24
trail referencing 96
transparency 21,31

CHAT 73
Chi machine 14
Choice point 35, 49

buffer 15,86, 107, 122, 136, 195
buffer management 213
deep 109
locality 115, 122
reference depth 79,81
reset depth 80, 87
shallow 87
size 79,81
stack 37,60
write bandwidth 56, 78

Chunk 36
Clause 5

body 5
goal 5
head 5,31
indexing 44, 95

Clipper machine 169
Code space 24, 57
Coefficient of variation 147
Coherency

in broadcast cache 166
in hybrid cache 168

MEMORY PERFORMANCE OF PROLOG ARCHlTEcrURES

in write-through cache 165
overhead 163
problem 4,164

Cold start 109
Committed-choice nondeterminism

10,61
Common instance 6

most general 6
Communication reference 64, 169
Compiler optimization 14, 44, 196,

198
Complex term

See also compound term
Compound term 5, 23, 57
Concatenate

See also append
Concurrent Prolog 61
Conditional graph expression (CGE)

62, 163, 172, 199
Consistency

See also coherency
Constant 5, 20, 22, 24, 56, 59
Continuation chain 48
Contour 24

buffer 16, 109
skeletal 34
stack 25

Copyback
cache 16, 115, 195
policy 105,117,164,167
ratio 106, 120

Correspondence 21, 31
Cut 7,25,26,37,42,48,50,61

lazy 61
Cydra-5 mUltiprocessor 188

deallocate 40
DEC-10 Prolog 13,25,30,32,47

architecture (prolog-lO) 47, 198
Declarative semantics 6
Degree of prefetching 128
DELCACHE simulator 118,174
depart 51
Dereferencing 32,41

chain length 80, 87
Determinate execution 7,33
Detrail 26

www.manaraa.com

INDEX

Direct Correspondence Architecture
(DCA) 3,21,46,198

Dirty
bit 108,111,117
line ratio 106, 120
location 105
total 120

Don't-care nondeterminism
See also committed-choice
nondeterminism

Don't-know nondeterminism 61
Dragon machine 166

E-stack 37,60, 115
enter 48,51
Environment 13,35,49

deep 81,111
locality 115
reference depth 80,81
reset depth 80, 87
size 40,79, 81
stack 37,60, 115
stack-buffer 115, 122
stack-buffer management 216
trimming 59, 70
write bandwidth 78

Environment-stacking architecture
13,47

execute 30, 40, 59
Execution model 20
Existential quantification 6

Fact 5
Failure 25,37,44,48,50,211

head 44,54
Firefly machine 121,167
Flores model 142, 145
Forceback

ratio 183
traffic 183

Format 87, 127
FORTRAN 31, 195

CIF 12,20
data write bandwidth 78
instruction run length 130
instruction size 91
instructions/procedure call 30

references/instruction 75
Frame 13,24

stack 25,31
stack buffer 34
variable 25

Full associativity 117
Functor 5, 56, 57

Gabriel benchmarks 11
Garbage collection 25, 42, 80, 87
get 27, 38, 56
Goal 5

(un)safe 36
Goal-stacking model 47
Groundness check 62
Guard 10
Guarded Horn Clauses 61

Heap 24,57
buffer 14, 34
locality 120
reference depth 80,86
reset depth 80, 87
size 76
write bandwidth 78, 170

Hit ratio 106
Host machine 20
HPM machine 14

227

Hybrid cache 4, 165, 168, 174, 196

Ideal architectures 12
Identifier 20,58
Image machine

See also machine
Image store 20
Independence check 62
Indexing 44,95,211

ideal 19, 44, 95
incremental 71

Indirect reference 22, 57
Instruction

alignment 87
bandwidth 87
bit encoding 31, 196
branch offset 92
buffer 128,136,196
buffer queueing model 154

www.manaraa.com

228

byte encoding 31, 196
cache 16,130,196
format 87, 127
log2 encoding 31,40,91
opcode 87
operand 87
orthogonality 87
run 128
size 91,205
syllable 91

Interconnection network 162
Interleave

factor 107, 179
memory 4,179,197

Interpretive mechanism 20
Intuitionistic Logic Interpreter (ILl)

73
Invalidation traffic 183
Inverse trail test 42

jump 59

Last call optimization
See also tail recursion
optimization

Lcode
arithmetic 70
assembler 72
choice point 59
conditional branch 71
data object 58
emulator 72
emulator kernel 58
environment 59
instruction encoding 58,205
instruction set 57, 205
storage model 57
tools 70

Line 112, 117
private 165
shared 165

Lisp 1, 10,47
List 7,23,57

cdr-coding 14,23,70
Locality 9,37,86, 106, 163

of cache 115
of choice point 115, 122

MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

of environment 115
of heap 120
of Pascal data 126
of Prolog code 136
of trail 120
ofWAM 3

Lock 64, 163, 167
Logic programming 1

parallel 10,61
Logical inference 141
Logical variable

See also variable

MlDIl 139
MlG/l 146
Machine 20

confluent 22
high-end 22
low-end 22

Mapping policy 118
Markovian process 139
MC68020 microprocessor 15, 198
Memory

access time 138
bandwidth efficiency 147, 183,

197
bandwidth requirement 2, 104
contention 138, 197
cycle time 138
effective access time 30
effective cycle time 144
interleaved 103,138,179,197
latency 104
local 4,87,103,162, 198
module 107
multiprocessor model 161
queue length 138
shared 2,161,197
simulators 73
two-level 103
uniprocessor model 105

Meta-level interpreter 1
Miss ratio 106, 131
Mode declaration 43, 62, 97
Multiprocessor 10

bus 182
cache simulator 172

www.manaraa.com

INDEX

coherency problem 4, 164
queueing model 178
shared memory 2,161,197

Name space 20
one-level 20
two-level 13,20,35

Nil(endoflist) 7,23
NIP 48
Nondeterminate execution

See also backtracking
Nondeterminism

committed-choice 10,61
don't-know 61

Occupancy 139
Offered bandwidth 143
Opcode 58, 87
Operand 28, 38, 87

unsafe 31
OR branch 25
Orthogonality 87

Parallelism 2, 10, 61
Parlog 61
Partial write-through cache

See also hybrid cache
Pascali, 12, 16, 195, 198

elf 20
coherency traffic 171
contour 24
data cache traffic 126
data write bandwidth 78
instruction encoding 93
locality 126
references/instruction 75
working set 126

Pegasus microprocessor 9, 15, 53,
109, 198

PEK machine 14
Performance degradation 17, 139,

147,148,156,183, 197
PLM 9,15, 19,53,138, 198

Prolog compiler 73
timing model 140

Pointer 22, 57
Poisson process 139

Pollaczek-Khinchine 147
Prefetch ratio 153
Procedural semantics 6
Procedure 5

arguments 36
call 36
determinate 37
nondeterminate 44

proceed 30, 40
Process boundary 165
Processing element (PE) 162
Program 5, 20
Prolog 1,4, 195

benchmarks 73
clause 5
compiler 70
data references 32
machines 14, 195
paging strategy 13
procedure 5
program 5
semantics 6
working set 13
write traffic 170

Prolog-lO 47,198
calling convention 48
comparison with W AM 50
cut 48
failure 48
memory referencing 51
state registers 48

PSI machines 14,19, 121
Push down list (pdl) 58

bandwidth 76
size 76

put 27,38,56
PWAM 2,13,19,61,196,198

bandwidth requirement 161
busy wait 99
cache performance 174

229

communication overhead 178,
197

communication reference 64,
169

global object 169
local object 169
memory referencing 97,98

www.manaraa.com

230 MEMORY PERFORMANCE OF PROLOG ARCHITECTURES

storage model 63, 101
tools 97

Pyramid multiprocessor 188

Query 5
Queueing model 3,138, 197

achieved bandwidth 143
asymptotic 139, 142
bandwidth efficiency 143
MIDI 1 139
MlGll 146
occupancy 139
of broadcast cache 183
of bus 145,149,182,183
of instruction buffer 154
of multiprocessor 178
of stack buffer 152
of write-through cache 180
offered bandwidth 143
open 139
peak sustainable request rate 140
request rate 139
service rate 139

Quintus Prolog 19
compiler (QC1) 73

Race 163
RAP-Prolog 62,168,197

benchmark 97, 172
CGE 97
mode declaration 97
parallel call 62
parallel goal 62
race 169

Read
mode 28
stall 104, 179

Read-modify-write 64, 167
Recursion 5
Reduced instruction set computer

(RISC) 8
Reference

trace 72
type 107, 166

Register
allocation 36, 38, 194
argument 36, 48, 56

number 70
set 20,35
shadow 9, 15, 109, 124
transfer 40
window set 53

Replacement 105, 118, 166
granularity 106
least recently used (LRU) 117,

196
random 118

Request rate 139
Resolution 6,31

Homclause 6
Restricted AND-Parallelism 13

architecture (PW AM) 2, 13, 19
Prolog (RAP-Prolog) 2, 62, 168,

197
retry 81
Robin v
Rule 5
Run 128

Scope 7,20,86,194
Selection strategy

See also indexing
Semantic content 11
Sequent multiprocessor 104, 188
Sequential execution 10
Service rate 139
Simple term 5, 22
Single-stack model 60
Skeletal contour 34
Software crisis 9
Speed-up 3,191,198
Split-stack 81, 115

model 60
object depth 96
referencing 96
size 96
trail test 61

SPUR microprocessor 9, 15,53, 198
Stability 21,41
Stack 24,57

bandwidth 76
buffer 14, 16, 86, 109, 122, 136,

195
buffer management 214

www.manaraa.com

INDEX

buffer queueing model 152
depth 96
frame 47
local 47
object depth 96
referencing 96
size 76
split 60, 81, 96, 115
true 86

Stall 104, 179
Store 20
Structure 5, 23, 57

copying 32, 52, 58, 78
sharing 32,52

Sub-block allocation 118
Substitution 6
Symbol table 57
Symbolics 3600 109

Prolog 47

Tag 9,22,58
Tail recursion optimIzation (TRO)

30,36,40,54,86
Tdead heuristic 179,181,147
Term 5
Three-stack model 24
Traffic

burst mode 112, 118
ratio 106, 118
raw 105, 112, 118

Trail 24
buffer 14, 34
locality 120
referencing 96, 171
size 76
stack 26,38
test 41,171
writes:reads 42

Transparency 21,31
Tricia 19

Unification 6, 11, 27, 32, 211
Unit clause 5
Universal quantification 6

Value 22,58
Variable 5,22

argument 25
local 25
permanent 36,38,56
shared 27, 33
temporary 36, 38, 56
unbound 58

VAX 8600 machine 16, 19

231

Warren Abstract Machine (W AM)
2,19,47,49,194

binding statistics 170
calling convention 49
comparison with Prolog-lO 50
cut 50
data area size 76
data reference statistics 76
data writes 78
failure 50
indexing 95
instruction referencing 95
instruction semantics 56
instructions/procedure call 30
references/instruction 74
state registers 48
tools 70
trail referencing 96
trail test 61

Word 22
physical 112, 138

Write mode 28
Write-allocation policy 106, 117
Write-back policy

See also copy back policy
Write-broadcast 166,170
Write-in policy

See also copyback policy
Write-through

cache 4,16,174,196
policy 105,117,165
ratio 180

X 1 machine 15

ZIP 48

